ON SOME PROPERTIES OF WING GRAPHS

Pramada Ramachandran
Assistant Professor, Department of Mathematics, St. Paul's College, Kalamassery - 683503
Ernakulam, Kerala, India

Abstract

The study of Graph operators began with Harary's, Norman's and Ore's study on 'Line Graphs' in the 1960s and it has multiplied to a vast area today. In this article, we study some properties of a special graph operator known as the ' Wing Graph'.

Key Words: Graph, Wing Graph, radius of a graph, the Complete Graph.

1. Introduction:

Definition 1.1: A graph $G=(V, E)$ is a pair consisting of some finite set ' V ', the 'vertex set' and some subset ' E ' of the set of all two element subsets of V, the ' edge set'.

We only consider graphs without multiple edges and loops. If there is an edge between vertices x and y, then the vertices are called adjacent.

Definition 1.2: A walk in a graph G is a sequence of vertices $v_{0}, v_{1}, v_{2}, \ldots \ldots . . v_{1}$ such that the $v_{i} s$ are distinct and v_{i} and v_{i+1} are adjacent for every ' i ' in $\{0,1,2, \ldots \ldots \ldots . . ., 1-1\}$. The number ' 1 ' is called the length of the path. The path is called a cycle if $\mathrm{v}_{0}=\mathrm{v}_{1}$ and it is denoted by C_{1+1}. A graph is said to be connected if there is a path between any pair of vertices in it.

Definition 1.3: The distance $\mathbf{d}_{\mathbf{G}}(\mathbf{x}, \mathbf{y})$ of two vertices ' x ' and ' y ' in a connected graph G is the length of a shortest path between them.

Definition 1.4: The eccentricity of a vertex ' x ' of a graph G is given by $\mathrm{e}_{\mathrm{G}}(\mathrm{x})=\operatorname{Sup}\left\{\mathrm{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}) / \mathrm{y} \varepsilon \mathrm{V}(\mathrm{G})\right\}$. The radius $\mathbf{r}(\mathbf{G})$ is the minimum eccentricity of a vertex in G and the diameter $\mathbf{d}(\mathbf{G})$ is the supremum of the set of all eccentrities appearing in G.

Published in Pauline Journal of Research \& Studies, Volume no: 1, Issue 2, March 2014, pg 247 252, ISSN - 2347-3843

Definition 1.5: A graph dynamical system is a pair (Γ, Φ) where Γ is a set of graphs and $\Phi: \Gamma \rightarrow \Gamma$ is a mapping called an 'operator'.

Definition 1.6: The complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ has a partition of the vertex set into two sets V_{1} and V_{2} of cardinality m and n respectively with vertices x and y adjacent whenever x is in V_{1} and y is in V_{2} and vice versa.

In this paper, some results on a graph operator known as the ' wing graph' are presented. It is defined as follows:

Definition 1.7: The Wing Graph $\mathrm{W}(\mathrm{G})$ of a graph G has all its edges as vertices. Two edges of G are adjacent vertices in $W(G)$ if they are non incident edges of some induced 4-vertex path in G.

For example, $\mathrm{W}\left(\mathrm{C}_{2 \mathrm{k}+1}\right)=\mathrm{C}_{2 \mathrm{k}+1}$

Wing Graphs were primarily studied in the quest to crack the Perfect Graph Conjecture. They can, however, be studied for several interesting properties of their own.
$\mathrm{W}\left(\mathrm{C}_{2 \mathrm{n}}\right), \mathrm{n} \geq 3$, consists of exactly two disconnected components, each of which is C_{n}. Also, if a graph G is of radius $\mathrm{r}(\mathrm{G}) \leq 2$, then $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$ for every u , v in $\mathrm{V}(\mathrm{G})$. Then there is no induced P_{4} in G. Such a G will have W(G) with no edges.

In all the following results, we assume that G is connected with $r(G)>2$. The terms and definitions not defined here are taken from (3).

2. Some properties of the Wing Graph:

Theorem 1: For any graph $G, W(G)$ will never be isomorphic to $K_{m, n}$
Proof:

Suppose $W(G)$ is isomorphic to $K_{m, n}$. Let the two sets of vertices of $K_{m, n}$ be $v_{0}, v_{1}, v_{2}, \ldots \ldots \ldots v_{m}$ and w_{0}, w_{1}, $w_{2}, \ldots \ldots \ldots w_{n}$. Consider v_{1} adjacent to w_{1}. Then they correspond to non adjacent edges of an induced P_{4} in G. Let 'e' be the third edge in that P_{4}. Then ' e ' cannot be any of the $v_{i} s, i \neq 1$, since that would make it adjacent to
w_{1} in $\mathrm{W}(\mathrm{G})$, which is not possible. Similarly, 'e' cannot be any of the $\mathrm{w}_{\mathrm{i}} \mathrm{s}, \mathrm{i} \neq 1$. This means e cannot be in either set of the bipartition, a contradiction. Hence the theorem.

Remark 1:

The wing graph is non isomorphic to the complete graph on 2 or more vertices. This is because two adjacent edges in G can never be adjacent in $W(G)$.

Theorem 2:

Given any connected graph H, there exists a connected graph G such that H is an induced subgraph of $W(G)$.
Proof:

Let the vertices of H be $v_{0}, v_{1}, v_{2}, \ldots \ldots \ldots v_{n}$. Consider the graph G constructed as follows: To each vertex v_{i} in H, attach a pendant vertex w_{i}, forming an edge e_{i}.

Claim: The subgraph G^{\prime} of $W(G)$ induced by $e_{1}, e_{2}, \ldots \ldots . ., e_{n}$ is isomorphic to H.
$\left|G^{\prime}\right|=n=|H| . e_{i}$ adjacent to e_{j} in G^{\prime} implies that they are non adjacent edges of an induced P_{4} in G. This in turn implies that v_{i} is adjacent to v_{j} in H. Conversely, if $v_{i}-v_{j}$ is an edge in H, then $w_{i}-v_{i}-v_{j}-w_{j}$ is an induced P_{4} in
G. This implies $e_{i}-e_{j}$ is an edge in G^{\prime}, where e_{i} is $w_{i}-v_{i}$ and e_{j} is $v_{j}-w_{j}$. Thus G^{\prime} is isomorphic to H.

Remark 2:

The above result shows that there does not exist a forbidden subgraph characterization for wing graphs.

Remark 3:

G' in the above theorem is not a unique construction. For example, both the following graphs have wing graphs with induced P_{5} :

Remark 4: For any graph G, the number of induced $P_{4} \mathrm{~S}$ in G is the same as the number of induced $\mathrm{P}_{4} \mathrm{~S}$ in the complement of G. So the order of $W(G)$ and order of $W\left(G^{C}\right)$ are the same.

Remark 5: G is H - free does not imply that $\mathrm{W}(\mathrm{G})$ is H - free.
Published in Pauline Journal of Research \& Studies, Volume no: 1, Issue 2, March 2014, pg 247 252, ISSN - 2347-3843

For example, consider the triangle free graph G whose wing graph has induced triangles :

G

W(G)

Theorem 3: Given any number ' a ' >1, there exists G such that $r(G)=r[W(G)]=a$.

Proof:_Consider the odd cycle $C_{2 a+1}$. Construct G as follows: Introduce a vertex ' v ' adjacent to two adjacent vertices of $C_{2 a+1}$. Then $r(G)=a$. Now, $W(G)$ is $C_{2 a+1}$ with two pendant vertices attached to the end vertices of an induced P_{3}. Then $r[W(G)]=a$.

Theorem 4: If $W(G)$ is isomorphic to P_{n}, then $n=5,6$ or 7 . In other words, if P_{n} is the wing graph of some graph G, then it is $\mathrm{P}_{5}, \mathrm{P}_{6}$ or P_{7}.

Proof: Suppose $W(G)$ is isomorphic to P_{n}. Obviously, it has to be connected. Further, G must not contain any induced cycles, so that $W(G)$ is cycle free. Hence G is a tree on $n+1$ vertices. Further, every vertex ' u ' in G must be such that $\mathrm{e}(\mathrm{u}) \geq 3$. This makes sure there are no isolated vertices in $\mathrm{W}(\mathrm{G})$.

Now, when $\mathrm{e}(\mathrm{u})=3, \operatorname{deg}(\mathrm{u})>3$ would imply the existence of a vertex in $W(G)$ of degree ≥ 3, which means $W(G)$ is not a path. So $\mathrm{e}(\mathrm{u})=3$ implies $\operatorname{deg}(\mathrm{u}) \leq 3$.

Similarly, when $\mathrm{e}(\mathrm{u})>3$, $\operatorname{deg}(\mathrm{u})>2$ would imply the existence of a vertex in $\mathrm{W}(\mathrm{G})$ of degree ≥ 3, which means $\mathrm{W}(\mathrm{G})$ is not a path. So $\mathrm{e}(\mathrm{u})>3$ implies $\operatorname{deg}(\mathrm{u}) \leq 2$.

So all vertices in G are of degree 1,2 or 3 only. Next, we see that if there were no vertices of degree 3 in G, G would be a path and hence $W(G)$ would be disconnected. So there is at least one vertex of degree 3 in G. Next, if there were more than one vertex of degree 3 in G, say u and v, , there would be a unique path between them. This
would lead to a disconnection in $W(G)$. Hence there is exactly one vertex of degree 3 in G.. The remaining n vertices are of degree 2 or 1 .

Let n_{1} be the number of vertices of degree 1 in G and n_{2} be the number of vertices of degree 2 in G. Then by the Fundamental Theorem of Graph Theory,
$\mathrm{n}_{1}+\mathrm{n}_{2}+3=2 \mathrm{n}$ and $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$. Solving these equations, $\mathrm{n}_{1}=3$ and $\mathrm{n}_{2}=\mathrm{n}-3$.

We see that G is a tree on $\mathrm{n}+1$ vertices with 3 pendant vertices, one vertex of degree 3 and $\mathrm{n}-3$ vertices of degree 2 .
So G can be constructed for $n=5,6$, and 7 , keeping $W(G)$ a path, as follows:

These graphs have wing graphs P_{5}, P_{6} and P_{7} respectively. For $n=9$, onwards, there appears an edge lying in 3 or more induced $\mathrm{P}_{4} \mathrm{~s}$. This edge corresponds to a vertex of degree ≥ 3 in $\mathrm{W}(\mathrm{G})$, preventing it from being a path. Hence the only possible values of n are 5,6 or 7 .

References:

1. Prisner E , 'Graph Dynamics', Longman, 1995
2. R. Balakrishnan \& K Ranganathan, 'A Text Book of Graph Theory', Springer, 1998
3. Harary F, 'Graph Theory', Addison Wesley, 1969
4. C T Hoang, 'On the two-edge colourings of perfect graphs'J. Graph Theory, 19 (1995) 271-279
