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                                         INTRODUCTION  

Mathematical programming has know a spectacular diversification in the last few 

decades. This process has happened at the level of mathematical research and at 

the level of application generated by the solution method that were created. The 

field of LFP, largely developed by Hungarian mathematician B.Martos and his 

associates in the 1960 s is concerned with problems of optimization. Linear 

fractional programming problems deals with determining the best possible 

allocation of available resources to meet certain specifications. In particular, that 

may deal with situation where a number of resources, such as people, materials, 

machines and land available and are to be combined to yield several products. In 

linear fractional programming, the goal is to determine a permissible allocation 

of resources that will maximize or minimize some specific showing such as profit 

gained per unit of cost or cost of unit of product produced etc. 

  Interest of this subject was generated by the fact that various optimization 

problems from engineering and economics consider the minimization of a ratio 

between physical and economical functions. For example, cost/time, 

cost/volume, cost/profit or other quantities that measure the efficiency of a 

system. For example the productivity of industrial system , defined as the ration 

between the realized services in a system within a given period of time and the 

utilized resources , is used as one of the best indicators of the quality of the 

operation such problems where the objective function appears as a ration of 

functions constitute fractional programming problem. 

   Strictly speaking, linear fractional programming is a special case of the boarder 

field of mathematical programming. Linear fractional programming deals with 

that class of mathematical programming problems in which the relations among 

the variables are linear. The constraint relations must be in linear form and the 
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function to be optimized must be a ratio of two linear functions. At the same time 

linear fractional programming includes as a special case the well known and wide 

spread. Linear Programming ( LP.) In the problems of LP both the restrictions 

and the objective function must be linear in form. If in an LFP problem the 

denominator of the objective function is constant, which equals to 1 then we have 

an LP problem. Conversely any problem of LP may be considered as an LFP one 

with the constant denominator of the objective function. Due to its importance in 

mode various decision process in management science, operational research and 

economics and also due to its frequent appearance in other problems that are not 

necessarily economical such as information theory of numerical analysis, 

stochastic programming, decomposition algorithms for large linear systems etc. 

The fractional programming method has received particular attention in the last 

three decades  

This project deals with linear-fractional programming (LFP). The object of LFP 

is to find the optimal (maximal or minimal) value of a linear fractional objective 

function subject to linear constraints on the given variables. If all unknown 

variables are real valued then we say that the problem is real or continuous. In the 

case of one or more integer-valued variables we usually say that the problem is 

integer or IP. The IP problem may be pure, if all the variables must have in 

optimal solution an integer value, or mixed in the other case. The constraints in 

the problem may be either equality or inequality constraints1. From the point of 

view of real-world applications, LFP possesses as many nice and extremely 

useful features, as linear programming (LP). If we have a problem formulated as 

an LP one, we can re-formulate this problem as LFP by replacing an original 

linear objective function with a ratio (fraction) of two linear functions. If in the 

original LP problem the objective function expresses, for example, the profit of 

some company, in the case of the LFP problem we can optimize the activity of 

the company in accordance with such fractional criteria as profit/cost or 
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profit/manpower requirement and so on. Moreover, from the point of view of 

applications such an optimal solution is often more preferable and attractive than 

obtained from the LP problem because of higher efficiency. Problems of  LFP 

arise when there appear a necessity to optimize the efficiency of some activity: 

profit gained by company per unit of expenditure of labor, cost of production per 

unit of produced goods , nutritiousness of ration per unit of cost, etc. Nowadays 

because of a deflect of natural resources the use of such specific criteria becomes 

more and more topical and relevant. So an application of LFP to solving real-

world problems connected with optimizing efficiency could be as useful as in the 

case of LP. The only problem is that until now there has been no well-made 

software package developed especially for using LFP and teaching it.  
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                                 CHAPTER-1 

                         INTRODUCTION TO LFP 

 LINEAR-FRACTIONAL PROBLEM 

 In 1960, Hungarian mathematician Bela Martos formulated and considered a 

so-called hyperbolic programming problem, which in the English language 

special literature is referred as a linear-fractional programming problem. In a 

typical case the common problem of LFP may be formulated as follows:  

Given objective function  

Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
 = 

∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 +𝑝0

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗+𝑑0

      _________-(1.1) 

which must be maximized (or minimized) subject to 

 ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖,
𝑛
𝑗=1         i = 1,2………. 𝑚1                                          (1.2 a)                                           

∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖
𝑛
𝑗=1 ,             i = 𝑚1+ 1, 𝑚1+ 2, ……. 𝑚2               (1.2 b)                                                                        

 ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖  𝑛
𝑗=1         i = 𝑚2 + 1, 𝑚2 + 2, ……. 𝑚         (1.2 c)       

  𝑥𝑗 ≥ 0, j = 1, 2, ...... , 𝑛1,                                ______(1.3)  

 where 𝑚1 ≤ 𝑚2 ≤ 𝑚,  𝑛1 ≤ 𝑛  Here and in what follows we suppose that 

𝐷(𝑥) ≠ 0, ∀𝑥 =(𝑥1, 𝑥2, ….𝑥𝑛) ∈ S, where S denotes a feasible set of solutions 

defined by constraints (1.2), (1.3). 

Because denominator 𝐷(𝑥) ≠ 0 ∀𝑥 ∈ S, without loss of generality we can 

assume that 

            𝐷(𝑥)  >  0 ∀𝑥 ∈ 𝑆          ____ (1.4)  
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 In the case of 𝐷(𝑥)  <  0 we can multiply numerator P(𝑥) and denominator 

𝐷(𝑥) of objective function Q(𝑥) with ( -1). 

Here and in what follows throughout the book we deal with just such linear-

fractional programming problems that satisfy condition (1.4). Furthermore, we 

suppose that all constraints in system (1.2) are linearly independent and so the 

rank of matrix A = ‖𝑎𝑖𝑗‖𝑚×𝑛 is equal to m. So in an LFP problem our aim is to 

find such a vector 𝑥 of decision variables  𝑥𝑗,  j=1,... n, which  

1. maximizes (or minimizes) function Q(𝑥), called objective function, and 

at the same time  

2. satisfies a set of main constraints (1.2) and sign restrictions (1.3). 

1.1 Main Definitions  

 Here we introduce the main conceptions that will be used throughout the rest of 

the book.  

DEFINITION 1.1 :  

 If given vector x = (𝑥1, 𝑥2, … 𝑥𝑛) satisfies constraints (1 .2) and (1.3), we will 

say that vector x is a feasible solution of LFP problem (1.1)-(1.3).  

DEFINITION 1.2: 

 If given vector x = (𝑥1, 𝑥2, … . 𝑥𝑛) is a feasible solution of maximization 

(minimization) LFP problem ( 1.1 )-( 1.3 ), and provides maximal (minimal) 

value for objective function Q(x) over the feasible set S, we say that vector x is 

an optimal solution of maximization (minimization) linear-fractional 

programming problem ( 1.1 )-( 1.3 ).  

DEFINITION 1.3 : 

We say that a maximization (minimization) linear-fractional programming  

problem is solvable, if its feasible set S is not empty, that is S ≠ 0, and objective 
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function Q(x) has finite upper (lower) bound on S.  

DEFINITION 1.4 :  

 If the feasible set is empty, that is S = 0, we say that the LFP problem is 

infeasible.  

DEFINITION 1.5 :  

 If objective function Q(x) of a maximization (minimization) LFP problem has 

no upper (lower) finite bound, we say that the problem is unbounded  

1.2: Relationship with Linear Programming 

 If all dj = 0, j = 1, 2, ... n, and d0 = 1, then LFP problem  becomes an LP problem. 

This is a reason why we say that an LFP problem is a generalization of an LP 

problem:   

Given objective function  

 P(x) = ∑ 𝑝𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑝0  ______ (1.5) 

which must be maximized (or minimized) subject to 

 ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 ,  i = 1, 2,...., m1,                   ____  (1.6a) 

 ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖
𝑛
𝑗=1 ,  i = m1+1, m2+2,…, m2,      ____  (1.6b) 

 ∑ 𝑎𝑖𝑗𝑥𝑗 =  𝑏𝑖
𝑛
𝑗=1 , i = m2+1, m2+2,…., m        ____  (1.6c) 

 𝑥𝑗 ≥ 0,  j = 1,2, ... ,n1,                                     ____  (1.7 ) 

There are also a few special cases when the original LFP problem may be 

replaced with an appropriate LFP problem:  

.  

1. If dj = 0, j = 1, 2, ... n, 𝑑0 ≠ 0, then objective function Q(x) becomes a 

linear one: 

Q(x) = ∑
𝑝𝑗

𝑑0

𝑛
𝑗=1 𝑥𝑗 +

𝑝0

𝑑0
=

𝑝(𝑥)

𝑑0
     ______ (1.8)  
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In this case maximization (minimization) of the original objective function Q(x) 

may be substituted with maximization (minimization) of linear function P(x)/d0  

correspondingly on the same feasible set S. 

2. If pj = 0, j = 1, 2, ... n, then objective function  

Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
=  

𝑝0

∑ 𝑑𝑗𝑥𝑗+𝑑0
𝑛
𝑗=1

       ___ (1.9) 

may be replaced with function D(x). In this case maximization (minimization) of 

the original objective function Q(x) must be substituted with minimization 

(maximization) of a new objective function D(x) on the same feasible set S. 

3. If vectors p = (𝑝1, 𝑝2, … , 𝑝𝑛) and d  = (𝑑1, 𝑑2, … , 𝑑𝑛 ) are linearly 

dependent, that is there exists such 𝜇 ≠ 0 and 𝑝 = 𝜇𝑑, then objective 

function 

Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
 =

∑ 𝜇𝑑𝑗𝑥𝑗+𝑝0
𝑛
𝑗=1

∑ 𝑑𝑗𝑥𝑗+𝑑0
𝑛
𝑗=1

 = … =𝜇+
𝑝0−𝜇𝑑0

∑ 𝑑𝑗𝑥𝑗+𝑑0
𝑛
𝑗=1

   __(1.10)  

may be replaced with function D(x). Obviously, in this case maximization 

(minimization) of the original objective function Q(x) must be substituted with  

 minimization (maximization) of D(x), if 

 𝑝0 − 𝜇𝑑0 > 0,  

 maximization (minimization) of D(x), if  

𝑝0 − 𝜇𝑑0 < 0  

                                             ____ (1.11) 

 

We should note here that in the case of 𝑝0 − 𝜇𝑑0 = 0,  we have Q(x) = 𝜇 which 

means that Q(x) = constant, ∀𝑥 ∈ S We will not consider such problems because 

of their pointlessness. 



14 
 

Here we exclude from our consideration the following three trivial cases: 

1. P(x) = constant, ∀𝑥 ∈ S;   

2. D(x) = constant, ∀𝑥 ∈ S;     _____ (1.12) 

3. Q(x) = constant,  ∀𝑥 ∈ S;  

because in these cases the original LFP problem may be reduced to an LP problem 

(first two cases), or becomes absolutely aimless (case 3).  

1.3 Main Forms of the LFP Problem  

We have seen that LFP problems may have both equality and inequality 

constraints. They may also have unknown variables that are required to be 

nonnegative and variables that are allowed to be unrestricted in sign (urs 

variable). Before the simplex method is discussed we should introduce some 

special forms of formulating an LFP problem and show how these forms may be 

converted to one another and to the form that is required by simplex method.  

DEFINITION : An LFP problem is said to be in standard form if all constraints 

are equations and all unknown variables are non-negative, that is  

Max(min):  Q(𝑥) = 
𝑃(𝑥)

𝐷(𝑥)
 = 

∑ 𝑝𝑗𝑥𝑗+𝑝0
𝑛
𝑗=1

∑ 𝑑𝑗𝑥𝑗+𝑑0
𝑛
𝑗=1

   ____  (1.13) 

Subject to:  ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖  𝑛
𝑗=1 , i =1,2,…,m,   ____  (1.14)  

                                 𝑥𝑗 ≥ 0 ,  j = 1,2,…,n,   _______  (1.15)  

Where D(𝑥) > 0, ∀𝑥 ∈ S. 

DEFINITION : An LFP problem is said to be in general form if all constraints 

are ≤ ('less than') inequalities and all unknown variables are non-negative, that is 

Max(min):    Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
 = 

∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 +𝑝0

∑ 𝑑𝑗𝑥𝑗+𝑑𝑜
𝑛
𝑗=1

    _____ (1.16) 
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Subject to:    ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 ,   i = 1,2,…m, 

                                                     𝑥𝑗  ≥ 0,     j = 1,2,…,n,     ______ (1.17) 

Where D(x) > 0,  ∀𝑥 ∈ S 

It is obvious that standard and general forms of LFP problems are special cases 

of a LFP problem formulated in form (1.1 ) - (1.3). Indeed, if in the common LFP 

problem (1.1) - (1.3) we put m1 = m2 = 0 and n1 = n, then we get a standard LFP 

problem. But if m1 = m and n1 = n, then we have a general LFP problem.  

To convert one form to another we should use the following converting 

procedures:  

1. ῾ ≥ ᾿('greater than')  →  ῾ ≤ ᾿ ('less than').  

Both sides of the  ῾ ≥ ᾿ constraint must be  multiplied by (-1)  

2. ῾ ≤ ᾿ ('less than')  → ῾ = ᾿  ('equal'). 

 Define for ≤ constraint a non-negative slack variable Si (Si ≥  0- slack 

variable for i-th constraint) and put this variable into the left-side of the 

constraint, where it will play a role of difference between the left and 

right sides of the original i-th constraint. Also add the sign restrictions 

Si ≥ 0 to the set of constraints. So  

                    ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 →  𝑛
𝑗=1 {

∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑠𝑖 = 𝑏𝑖
𝑛
𝑗=1    

𝑠𝑖 ≥ 0
} ___ (1.18) 

      3. Unrestricted in sign variable xi → restricted in sign non-negative     .                

variable(s) For each urs variable xj, we begin by defining two new non-

negative variables xj' and xj'' .Then substitute xj' – xj'' for xj in each 

constraint and in objective function. Also add the sign restrictions xj' ≥ 0 

and xj'' ≥ 0 to the set of constraints 

 Let us introduce the following notations:  
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𝐴𝐽 = (𝑎1𝑗 , 𝑎2𝑗 , … . 𝑎𝑚𝑗)T, j = 1, 2, ... , n;  

b = (𝑏1, 𝑏2, … , 𝑏𝑚)T , A= (A1, A2,...,An), 

x = (𝑥1, 𝑥2, … , 𝑥𝑛)T, p = (𝑝1, 𝑝2, … , 𝑝𝑛)T, d =(𝑑1, 𝑑2, … , 𝑑𝑛)T.  

Using this notation we can re-formulate an LFP problem in a matrix form: 

 Standard problem  

      Q(x) = 
𝑝𝑇𝑥+𝑝0

𝑑𝑇𝑥+𝑑0
 → 𝑚𝑎𝑥,   

subject to : ∑ 𝐴𝑗𝑥𝑗 = 𝑏,𝑛
𝑗=1  

                       𝑥 ≥ 0, 

Where D(𝑥) = 𝑑𝑇𝑥 + 𝑑0 > 0, ∀𝑥 ∈ 𝑆 

General Problem 

      Q(𝑥) = 
𝑝𝑇𝑥+𝑝0

𝑑𝑇𝑥+𝑑0
  → 𝑚𝑎𝑥 

subject to :  𝐴𝑥 ≤ 𝑏, 

                    𝑥 ≥ 0, 

Where D(x) = dT𝑥 + d0 > 0,  ∀ 𝑥 ∈ 𝑆 

 We should note here that in accordance with the theory of mathematical 

programming  

min
𝑥∈𝑆

𝐹(𝑥) ≡ max
𝑥∈𝑆

(−𝐹(𝑥))  
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                         CHAPTER – 2 

                 THE GRAPHICAL METHOD 

We now go on to discuss how any LFP problem with only two variables can be 

solved graphically. Consider the following LFP problem with two unknown 

variables: 

 Q (x) = 
 𝑃(𝑥)

𝐷(𝑥)
=

𝑝1𝑥1+𝑝2𝑥2+𝑝0

𝑑1𝑥1+𝑑2𝑥2+𝑑0
→ max(𝑚𝑖𝑛)    (2.1)                                                  

Subject to :   𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 ≤ 𝑏𝑖          (2.2) 

                      𝑥1 ≥ 0, 𝑥2 ≥ 0.                (2.3) 

 

2.1 The Single Optimal Vertex  

Let us suppose that constraints (2.2) and (2.3) define feasible set S shown by 

shading in Figure 2.11. Let Q(x) = K, where K is an arbitrary constant 

 

Figure 2.11. Two-variable LFP problem-Single optimal vertex 
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For any real value K, equation  

Q(x) = K  

Or (𝑝1 − 𝐾𝑑1)𝑥1+(𝑝2 − 𝐾𝑑2)𝑥2 + (𝑝0 − 𝑘𝑑0) = 0 

represents all the points on a straight line in the two-dimensional plane x1Ox2. 

If this so-called level-line (or isoline) intersects the set of feasible solutions S, 

the points of intersection are the feasible solutions that give the value K to the 

objective function Q(x). Changing the value of K translates the entire line to 

another line that intersects the previous line in focus point (point F in Figure 

2.11) with coordinates defined as solution of system  

p1x1 + p2x2 = -p0      ____ (2.4)  

d1x1 + p2x2 = -d0        

In other words, in the focus point F straight lines with equations P(x) = 0 and 

D(x) = 0 intersect one another. 

 If lines P(x) = 0 and D(x) = 0 are not parallel with one another, then the 

determinant of system (2.4) is not equal to zero and the system has a unique 

solution (coordinates of focus point F). In the other case, if lines P(x) = 0 and 

D(x) = 0 are parallel with one another, the determinant of system (2.3) is equal to 

zero and the system has no solution. It means that there is no focus point and all 

level-lines are also parallel with one another. The given LFP problem (2.1)-(2.2) 

degenerates to an LP one. Hence, to maximize objective function Q(x) we should 

minimize or maximize its denominator D(x) depending on the sign of expression 

 𝑝0 − 𝜇𝑑0. 

Let us return to the case when level-lines are not parallel with one another. Pick 

an arbitrary value of K and draw the line Q(x) = K as follows. 
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 𝑥2 =
𝑝1−𝑘𝑑1

𝑝2−𝑘𝑑2
𝑥1 −

𝑝0−𝑘𝑑0

𝑝2−𝑘𝑑2
  

In such a case the slope   

k = −
𝑝1−𝑘𝑑1

𝑝2−𝑘𝑑2
 

of level-line Q(x) = K depends on value K of objective function Q(x), and is a 

monotonic function on K because 

           
𝑑𝑘

𝑑𝐾
=

𝑑1𝑝2−𝑑2𝑝1

(𝑝2−𝐾𝑑2)2  

Further, the sign of  
𝑑𝑘

𝑑𝐾
  does not depend on the value of K, so we can write   

sign { 
𝑑𝑘

𝑑𝐾
} = sign {d1p2 – d2p1} = const.    

It means that when rotating level-line around its focus point F in positive direction 

(i.e.counter clockwise), the value of objective function Q(x) increases or 

decreases depending on the sign of expression (d1p2 – d2p1). Obviously, Figure 

2.11 represents the case when rotating level-line in positive direction leads to 

growth of value Q(x). When rotating level-line around its focus point F the line 

Q(x) = K intersects feasible set S in two vertices (extreme points) x* and x**. In 

the point x* objective function Q(x) takes its maximal value over set S and in the 

point x** it takes its minimal value.  

2.2 Multiple Optimal Solutions  

 It may occur that when rotating level-line on its focus point F the level-line  

Q(x) = K captures some edge of set S (see edge e in Figure 2.12). In this case  
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Figure 2.12. Two-variable LFP problem-Multiple optimal solutions.  

the problem has an infinite number of optimal solutions (all points x of edge e) 

that may be represented as a linear combination of two vertex points x* and x***: 

𝑥 =  𝜆𝑥∗ + (1 − 𝜆)𝑥∗∗∗, 0 ≤ 𝜆 ≤ 1  

2.3 Mixed cases 

 If feasible set S is unbounded and an appropriate unbounded edge concurs with 

extreme level-line (see Figure 2.13), then the problem has an infinite number of 

optimal solutions one of them in vertex x* and others are non-vertex points 

unbounded edge. We should note here that among these non-vertex points there 

is one infinite point too.  This is why we say in this case that the problem has 

'mixed' solutions, i.e. finite optimal solution(s) and asymptotic one(s).  
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Figure 2.13. Two-variable LFP problem - Mixed case.  
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                                       CHAPTER 3 

 Methods For Solving Linear Fractional Programming Problems                      
  

3.1 Charnes & Cooper's Transformation 

 In 1962 A. Charnes and W.W. Cooper showed that any linear-fractional 

programming problem with a bounded set of feasible solutions may be converted 

to a linear programming problem. Consider the common LFP problem (1.1) - 

(1.3). Let us introduce the following new 𝑡𝑗 variables:  

  𝑡𝑗 =
𝑥𝑗

𝐷(𝑥)
 , j = 1,2,…,n,    t0 =

1

𝐷(𝑥)
 

  Where,     

     D(𝑥) =  ∑ 𝑑𝑗𝑥𝑗 + 𝑑0
𝑛
𝑗=1  

Using these new variables tj  ,  j = 0,1,…,n, we can rewrite the original objective 

function Q(x) in the following form 

L(t) = ∑ 𝑝𝑗𝑡𝑗 → max (𝑜𝑟 𝑚𝑖𝑛) ____(3.2) 

Since we suppose that D(𝑥) > 0∀ 𝑥 ∈ 𝑆, we can multiply all constraints of 

(1.2) and (1.3) by 1/D(x), so we obtain the following constraints: 

−𝑏𝑖𝑡0 + ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑡𝑗 ≤ 0,   𝑖 = 1,2, … , 𝑚1      

−𝑏𝑖𝑡0 + ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑡𝑗 ≥ 0, 𝑖 = 𝑚1+1, 𝑚1+2,…,𝑚2  ___(3.3) 

−𝑏𝑖𝑡0 + ∑ 𝑎𝑖𝑗𝑡𝑗 = 0,𝑛
𝑗=1  𝑖 = 𝑚2+1, 𝑚2+2,…, 𝑚 

   𝑡𝑗 ≥ 0;   𝑗 = 0,1,2, . . . , 𝑚1                                                               _________- (3.4)  
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The connection between the original variables xj and the new variables tj will be 

completed if we multiply equality (3.1) by the same value 1/D(x), and then 

append the new constraint to the new problem:  

∑ 𝑑𝑗𝑡𝑗
𝑛
𝑗=1 = 1  ____(3.5)  

Here and in what follows the new problem (3.2)-(3.5) will be referred to as a 

linear analogue of an LFP problem. This transformation (usually referred to as 

Charnes and Cooper transformation) of variables establishes a one ↔ one 

connection between the original LFP problem and its linear analogue 

Since feasible set S is bounded, function D(x) is linear and D(x) > 0, ∀𝑥 ∈ 𝑆, the 

following statement may be formulated and proved:  

THEOREM : 3.1 

If vector t* = (t*
 0, t

*
1,…, t*

n )
T optimal solution of problem (3.2)-(3.5), then vector 

𝑥∗ = (𝑥0
∗, 𝑥1

∗, … , 𝑥𝑛
∗ )𝑇 is an optimal solution of original LFP problem (1.1)-(1.3), 

where  

𝑥𝑗
∗ =

𝑡  𝑗 
∗

𝑡  𝑗
∗ , 𝑗 = 1,2, … 𝑛 

  

Proof.  

We prove this statement only for the case of maximization problems. In the case 

of minimization the proof may be implemented in an analogous way. Since vector 

t* is the optimal solution of maximization linear analogue, it follows that  

𝐿(𝑡∗) ≥ 𝐿(𝑡), ∀𝑡∈ 𝑇, 

where T denotes a feasible set of linear analogue  Let us suppose that vector x* 

is not an optimal solution of the maximization LFP problem. Hence,  there exist 



24 
 

some another vector x' ∈ S, such that Q(x') ≥ Q(x*). But at the same time  

Q(x*) = 
∑ 𝑝𝑗𝑥 𝑗

∗ +𝑝0
𝑛
𝑗=1

∑ 𝑑𝑗𝑥 𝑗
∗ +𝑑0

𝑛
𝑗=1

=
∑ 𝑝𝑗 

𝑡 𝑗
∗

𝑡 0
∗ +𝑝0

𝑛
𝑗=1

∑ 𝑑𝑗

𝑡 𝑗
∗

𝑡 0
∗

𝑛
𝑗=1 +𝑑0

        

=
∑ 𝑝𝑗𝑡 𝑗

∗ +𝑝0𝑡 0
∗𝑛

𝑗=1

∑ 𝑑𝑗𝑥 𝑗
∗ +𝑑0𝑡 0

∗𝑛
𝑗=1

=
∑ 𝑝𝑗𝑡 𝑗

∗ +𝑝0𝑡 0
∗𝑛

𝑗=1

1
= 𝐿(𝑡∗)    

Since vector x' is a feasible solution of the original LFP problem, it is easy to 

show that vector   

 t' = (𝑡0
′ , 𝑡1

′ , … , 𝑡𝑛
′ )𝑇,𝑡0

′ = 
1

𝐷(𝑥′ )
, 𝑡𝑗

′ 
= 

𝑥𝑗
′ 

𝐷(𝑥′ )
 , 𝑗=1,2,…n 

is a feasible solution of linear analogue and 

 𝐿(𝑡′ ) ≥ 𝐿(𝑡∗).   

But the latter contradicts our assumption that vector 𝑡∗is an optimal solution of 

the maximization problem (3.2)-(3.5). It means that vector 𝑥∗ is an optimal 

solution of the maximization LFP problem   

Example – 1        

          Max Q(x) = 
8𝑥1+9𝑥2+4𝑥3+4

2𝑥1+3𝑥2+2𝑥3+7
 

 Subject to   

            1𝑥1 + 1𝑥2 + 2𝑥3 ≤ 3, 

             2𝑥1 + 1𝑥2 + 4𝑥3 ≤ 4, 

             5𝑥1 + 3𝑥2 + 1𝑥3 ≤ 15, 

                    𝑥𝑗 ≥ 0, 𝑗 = 1,2,3 

 Solving this LFP problem we obtain  
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𝑥∗ = (1,2,0)𝑇, 𝑝(𝑥∗) = 30, 𝐷(𝑥∗) = 15, 𝑄(𝑥∗) = 2 

 we construct the following linear analogue of our LFP problem  

𝐿(𝑡) = 4𝑡0 + 8𝑡1 + 9𝑡2 + 4𝑡3 → 𝑚𝑎𝑥 

Subject to  

7𝑡0 + 2𝑡1 + 3𝑡2 + 2𝑡3 = 1,  

−3𝑡0 + 1𝑡1 + 1𝑡2 + 2𝑡3 ≤ 0,  

−4𝑡0 + 2𝑡1 + 1𝑡2 + 4𝑡3 ≤ 0,  

−15𝑡0 + 5𝑡1 + 3𝑡2 + 1𝑡3 ≤ 0,   

𝑡𝑗 ≥ 0, 𝑗 = 1,2,3  

 If we solve this linear programming problem we have  So,  

𝑡∗ = (
1

15
,

1

15
,

2

15
, 0)𝑇 , 𝐿(𝑡∗) = 2 

              𝑡∗ =
1

15
, 𝑡1

∗ =
1

15
, 𝑡2

∗ =
2

15
, 𝑡3

∗ =
0

15
 

We should note here that in the case of an unbounded feasible set S it may occur 

that in the optimal solution of the linear analogue 𝑡0
∗ = 0. It means that the optimal 

solution of the original LFP problem is asymptotic and the optimal solution x* 

contains variables with an infinite value. The connection between the optimal 

solutions of the original LFP problem and its linear analogue formulated in 

Theorem  seems to be very useful and at least from the point of view of theory 

allows to substitute the original LFP problem with its linear analogue and in this 

way to use LP theory and methods. However, in practice this approach based on 

the Charnes and Cooper transformation may not always be utilized. The problems 

arise when we should transform an LFP problem with some special structure of 

constraints, for example transportation problem, or assignment problem or any 
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other problem with a fixed structure of constraints, and would like to apply 

appropriate special methods and algorithms. Indeed, if in the original LFP 

problem we have n unknown variables and m main conditions, then in its linear 

analogue we obtain n + 1 variables and m + 1 constraints. Moreover, in the right-

hand side of system (3.3) we have no vector b. Instead of the original vector b we 

have a vector of zeros. which means that we cannot apply the main results of 

duality theory formulated for LFP problems 

All these changes in the structure of constraints means that the use of special 

methods and algorithms in this case becomes very difficult or absolutely 

impossible. This is why, in spite of the existence of the Charnes and Cooper 

transformation, we will focus on a direct approach to the investigation of an LFP 

problem and as we have seen the use of such a direct approach is necessary and 

unavoidable  

Dinkelbach's Algorithm  

One of the most popular and general strategies for fractional programming (not 

necessary linear) is the parametric approach described by W.Dinkelbach . In the 

case of linear-fractional programming this method reduces the solution of a 

problem to the solution of a sequence of linear programming problems. 

Consider the common LFP problem (1.1)-(1.3) and function  

𝐹(𝜆) =
𝑚𝑎𝑥

𝑥∈𝑠
{𝑃(𝑥) − 𝜆𝐷(𝑥)} , 𝜆 ∈ 𝑅    

 where S denotes the feasible set of (1.1)-(1.3).  

The following theorem plays the role of the theoretical foundation of 

Dinkelbach's method.  

THEOREM   

Vector 𝑥∗ an optimal solution of the LFP problem ( 1.1 )-( 1.3) if and only if  
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         𝐹(𝜆∗) =
𝑚𝑎𝑥

𝑥∈𝑆
{𝑃(𝑥) − 𝜆∗𝐷(𝑥)} = 0                   _____(3.1) 

 Where,          𝜆∗ =
𝑃(𝑥∗)

𝐷(𝑥∗)
 

Proof. If vector x* is an optimal solution of problem (1.1)-(1.3) then  

 𝜆∗ =
𝑃(𝑥)∗

𝐷(𝑥)∗ ≥
𝑃(𝑥)

𝐷(𝑥)
, ∀𝑥 ∈ 𝑆  

The latter means that  

 𝑃(𝑥) − 𝜆∗𝐷(𝑥) ≤ 0, ∀𝑥 ∈ 𝑆 

Taking into account equality we obtain 

 
𝑚𝑎𝑥

𝑥 ∈ 𝑆
{𝑃(𝑥) − 𝜆∗𝐷(𝑥)} = 0.   

 Conversely, if vector x* is an optimal solution of problem (3.1) 

Then  

 𝑃(𝑥) − 𝜆∗ ≤ 𝑃(𝑥∗) − 𝜆∗𝐷(𝑥∗) = 0 ∀𝑥 ∈ 𝑆. 

This means that vector x* is an optimal solution of LFP problem (1.1)-(1.3). This 

theorem also gives a procedure for calculating the optimal solution of linear-

fractional programming problem 

Dinkelbach's   Algorithm 

 Step 0. Take 𝑥0 ∈ 𝑆 compute 𝜆1 =
𝑃(𝑥0)

𝐷(𝑥0)
, ·= and let k =1; 

 Step 1. Determine 𝑥(𝑘): =  arg max
𝑥∈𝑆

{𝑃(𝑥) − 𝜆(𝑘)𝐷(𝑥)} 

 Step 2. If F (𝜆𝑘) = 0 then is an optimal solution; Stop;  

Step 3. Let 𝜆(𝑘+1) ≔
𝑃(𝑥(𝑘))

𝐷(𝑥(𝑘))
; let k:= k+1; go to step 1;                                                                                      

         Algorithm – Dinkelbach`s Algorithm 
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Example2:  

      Max:  

   𝑄(𝑥) =
𝑃(𝑥)

𝐷(𝑥)
=

𝑥1+𝑥2+5

3𝑥1+2𝑥2+15
 

Subject to  

          3𝑥1 + 𝑥2 ≤ 6, 

           3𝑥1 + 4𝑥2 ≤ 12,                    ________ (2.1) 

            𝑥1 ≥ 0, 𝑥2 ≥ 0 

Step 0: Since vector x = (0,0)T satisfies all constraints of the problem, we may 

take it as a starting point x(0) ∈ S. So, for x(0) = (0,0)T we obtain  

𝜆(1) ≔
𝑃(𝑥(0))

𝐷(𝑥(0))
=

5

15
=

1

3
,  

Step 1: Now, we have to solve the following linear programming problem  

𝑃(𝑥) − 𝜆(1)𝐷(𝑥) = 𝑃(𝑥) −
1

3
𝐷(𝑥) =

1

3
𝑥2 → 𝑚𝑎𝑥 Subject to constraints, 

 Solving this problem we obtain   

            𝑥(1) = (0,3)𝑇, 𝐹(𝜆(1)) = 1 

Step 2: Since F (𝜆(1)) ≠ 0 we have to perform 

Step 3: We have to calculate  

            𝜆(2) ≔
𝑃(𝑥(1))

𝐷(𝑥(1))
=

1×3+5

2×3+5
=

8

21
,  

then to put k:=k+1=2 and repeat  

Step 1: Solve the following LP Problem 
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 𝑃(𝑥) − 𝜆(2)𝐷(𝑥) = 𝑥(2) 

                    = (0,3)𝑇, 𝐹(𝜆(2)) = 0  

                    = (1 −
8

21
× 3)𝑥1 + (1 −

8

21
× 2)𝑥2 + (5 −

8

21
× 15) 

                = −
1

7
𝑥1 +

5

21
𝑥2 −

5

7
→ 𝑚𝑎𝑥 

Subject to constraints, (2.1)  

The optimal solution for this problem 

𝑥(2) = (0.3)𝑇  = (0,3)T, F(𝜆(2)) = 0 

Step 2: Since F(𝜆(2)) = 0 vector 𝑥∗ = 𝑥(2) 

is the optimal solution; stop;  

In accordance with the algorithm, the optimal solution of our LFP problem is 

  𝑥∗ = (0,3)𝑇with optimal objective value 𝑄(𝑥∗) = 8 12.⁄  
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                         CHAPTER 4  

                          LFP APPLICATION MODELS 

 The applications of linear programming to various branches of human activity, 

and especially to economics, are well known. The applications of linear fractional 

programming are less known, and, until now, less numerous. Of course, the 

linearity of a problem makes it easier to deal with, and hence leads to its greater 

popularity. However, not all real-life problems may be adequately described in 

the frames of linear models. Linear-fractional programming is a branch of 

nonlinear programming that was introduced only in the early 60's but since the 

first publications devoted to LFP problems, this branch has attracted the attention 

of more and more researchers and specialists because there is a broad field of 

real-world problems, where the use of LFP is more suitable. In this section of the 

book we set out to consider several problems that may be formulated in the form 

of LFP problems.  

4.1 Main Economic Interpretation  

Let a certain company manufacture n different products. Further, let 𝑃𝐽 be the 

profit gained by the company from a unit of the j-th product, be some constant 

profit gained whose magnitude is independent of the output volume. The 

manufacturing of one unit of product j costs 𝑑𝑗and there is some constant 

expenditure d0 whose value does not depend on the production activity of the 

company and must be paid for in any case, even if the company does not 

manufacture anything. 

 Let bi be the volume of some scarce resource i available to the company and 

𝑎𝑖𝑗 be the expenditure quota of the i-th resource for manufacturing a unit of j-th 

kind of the product. The company must decide how many units of each product j 

should be produced if the efficiency calculated as the ratio (total profit)/( total 

cost) must be maximized. This problem leads us to define decision variables 𝑥𝑗 
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the unknown output volume of some j-th product, j = 1, 2, ... , n. The company's 

total profit (including constant profit P0) may be expressed as  

 P(x) = ∑ 𝑝𝑗𝑥𝑗 + 𝑝0
𝑛
𝑗=1  

while the total cost of production activity (including constant expenditure 0) is  

 D(x) = ∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑑0   

So the company's objective function may be written as  

Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
=

∑ 𝑝𝑗𝑥𝑗+𝑝0
𝑛
𝑗=1

∑ 𝑑𝑗𝑥𝑗+𝑑0
𝑛
𝑗=1

→ 𝑚𝑎𝑥 

The company's main constraints are the following: ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 , i = 1, 2,…m  

Since unknown variables express the amount of production to be produced, of 

course, we also require 

  𝑥𝑗 ≥0, for all j = 1,2, ... , n.   

 This problem is formulated in general form as an LFP problem with n unknown 

non-negative variables and m main constraints.  

4.2 A Maritime Transportation Problem  

Let us suppose that in port A we have to load a ship of limited carrying capacity 

C with n types of goods and transport these goods to port B. Our aim is to 

determine how much of each type of goods must be loaded such that the profit 

gained per unit of transportation cost be maximal. Let Uj be the maximum 

available quantity of j-th good, and Pj and dj be the profit gained per unit of this 

good and cost of its transportation respectively,j = 1, 2,…,n. If wj denotes the 

weight of unit of j-th good, and xj is an unknown variable, which expresses the 

quantity of j-th good be loaded, the mathematical model of such a problem may 

be formulated as follows:  
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∑ 𝑝𝑗𝑥𝑗

𝑛
𝑗=1

∑ 𝑑𝑗𝑥𝑗
𝑛
𝑗=1

→ 𝑚𝑎𝑥 

subject to 

                       ∑ 𝑤𝑗𝑥𝑗 ≤ 𝐶𝑛
𝑗=1  

      0≤ 𝑥𝑗 ≤ 𝑈𝑗 ,  j=1,2,…,n 

 The problem formulated in this way is an LFP problem with one main 

constraint and n unknown nonnegative bounded variables.  

 4.3 A Financial Problem   

Suppose that the financial advisor of a university's endowment fund must invest 

up to $100, 000 in two types of securities: bond7Stars, paying a dividend of 7%, 

and stock MaxMay, paying a dividend of 9%. The adviser has been advised that 

no more than $30, 000 can be invested in stockMaxMay, while the amount 

invested in bond 7Stars must be at least twice the amount invested in stock 

MaxMay. Independent of the amount to be invested, the service of the broker 

company which serves the adviser costs$100. How much should be invested in 

each security to maximize the efficiency of investment? 

 Let x and y denote the amounts invested in bond 7Stars and stock MaxMay, 

respectively. We must then have  

                x+y ≤ 100000; 

                    x ≥ 2𝑦; 

                    y ≤ 30000; 

Q(x,y) = 
 𝑅(𝑥,𝑦)

𝐷(𝑥,𝑦)
=

0.07𝑥+0.09𝑦

𝑥+𝑦+100
→ 𝑚𝑎𝑥 

Of course, we also require   



33 
 

𝑥 ≥ 0, and 𝑦 ≥ 0 

 The return to the university is 

 R(x, y) = 0.07x + 0.09y 

 while the total amount of investment is as follows 

 Q(x,y) = 
𝑅(𝑥,𝑦)

𝐷(𝑥,𝑦)
=

0.07𝑥+0.09𝑦

𝑥+𝑦+100
→ 𝑚𝑎𝑥 

 subject to  

                𝑥 + 𝑦 ≤100000; 

                   𝑥 − 2𝑦 ≥ 0; 

                       y ≤ 30000. 

                   𝑥 ≥ 0,  y≥ 0.  

4.4 A Blending Problem  

 A metal processor wishes to produce at least15 kilograms of a new alloy NA of 

lead and tin, containing at least 60% of lead and at least 35% of tin. This new 

product may be sold for$200 per kilogram. There are four different alloys A1, 

A2, A3, and A4 available in amount of 12, 15, 16, and 10 kilograms, respectively 

. These alloys have the percentage compositions and prices per kilogram is 

shown below: 

                       A1               A2            A3           

  

     A4 

Lead               40%       60%         80%       70% 

Tin                  60%       40%         20%       30 % 

Costs             $240       $180      $160         $210 
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How should the processor blend alloys A1, A2 A3, and A4 to maximize 

efficiency of the business? In other words, the processor would like to know how 

many of each alloy must be blended so that the income/cost ratio would be 

maximal?  

First of all, we define variables x1, x2, x3, and x4 which express the amount of 

each alloy to be blended. It is obvious, that the total cost of the blend is  

D(x) = 240x1 + 180x2 + 160x3 + 210x4,   

while the total income expected from the blend produced and sold is  

P(x) = 200(x1 + x2 + x3 + x4) = 200x1 + 200x2 + 200x3 + 200x4. 

The explicit conditions of the problem may be expressed as a following system 

of inequalities 

for lead: 
 0.4x1 + 0.6x2 + 0.8x3 + 0.7x4

𝑥1+𝑥2+𝑥3+𝑥4
≥ 0.60  

for tin:  
0.6𝑥1+0.4𝑥2+0.2𝑥3+0.3𝑥4

𝑥1+𝑥2+𝑥3+𝑥4
≥ 0.35 

 which gives us the following system of linear inequalities  

−0.20𝑥1 + 0.00𝑥2 + 0.20𝑥3 + 0.10𝑥4 ≥ 0, 

0.25𝑥1 + 0.05𝑥2 − 0.15𝑥3 − 0.05𝑥4 ≥ 0, 

Since the available value of each alloy is limited, we have the following 

restrictions  

𝑥1 ≤ 12, 𝑥2 ≤ 15, 𝑥3 ≤ 16, 𝑥1 ≤ 10, 

 Finally, we have to add to the system the following condition  

          𝑥1 + 𝑥2 − 𝑥3 − 𝑥4 ≥ 15, 

since the processor wishes to produce at least 15 kilograms of new alloy. Of 

course, we also require           𝑥𝑗 ≥ 0,  j = 1,2,3,4.  
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 Combining objective function Q(x) = P(x)/D(x) with restrictions leads to the 

following LFP problem with four bounded variables  

Q(x) = 𝑃(𝑥)/𝐷(𝑥) =
200𝑥1+200𝑥2+200𝑥3+200𝑥4

240𝑥1+180𝑥2+160𝑥3+210𝑥4
→ 𝑚𝑎𝑥  

 subject to  

    −0.021𝑥1 +            +0.20𝑥3 + 0.10𝑥4 ≥ 0, 

         0.25𝑥1 + 0.05𝑥2 + 0.20𝑥3 + 0.10𝑥4 ≥ 0, 

                 𝑥1                                                       ≤ 12, 

                                 𝑥2                                    ≤ 15, 

                                                     𝑥3                     ≤ 16, 

                                                  𝑥4 ≤ 10, 

   𝑥1 ≥ 0 , 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0 

 

4.5 Product Planning  

Suppose that a refrigerator manufacturer is able to produce five types of 

refrigerator: Lebel 220, Lebel 120, Star 200, Star 160 and Star 250. The 

manufacturer has an order from dealers to produce 150, 70 and 290 units of Star 

200, Star 160 and Star 250 respectively and 240 units without type detailing (that 

is, they can be of any type). The manufacturer wishes to formulate a production 

plan that maximizes its profit gained per unit of cost. All necessary resources 

excluding Freon 12 and TL 16 aren't scarce. The maximal available quantities of 

Freon 12 and TL 16 are125 and 80 liters respectively. Manufacturing has the 

following requirements and known data:     
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                                  L 200      L 120         

   

   S200       S 160      S 250 

TL 16 (litre / unit)        0.2            0.13        __            __          __ 

F 12  (litre / unit)          __             __          0.22         0.21       0.26 

Price $ / unit               420.0        365.0      395.0       355.0    450.0 

Cost $ / unit)               320.0        290.0      300.0       280.0    340.0 

 

The manufacturer wishes to satisfy given orders and to get maximum profit 

gained per unit of total cost of production 

. Let 𝑥𝑗  , 𝑗 = 1, 2, 3, 4, 5, denotes the unknown quantities of Lebel 200, Lebel 

120, Star 200, Star 160 and Star 250 respectively to be produced. The total profit 

gained by the manufacturer may be expressed in the following form: 

P(x) = (420- 320)𝑥1 + (365-290)𝑥2 + (395-300)𝑥3 + (355- 280)𝑥4 + (450-340)𝑥5 

Obviously, total cost is    

D(x) = 320𝑥1+ 290𝑥2 + 300𝑥3 + 280𝑥4 + 340.𝑥5  

In this case the objective function will be the following: 

 Q(x) = 
𝑃(𝑥)

𝐷(𝑥)
=

420𝑥1+365𝑥2+395𝑥3+355𝑥4+450𝑥5 

320𝑥1+290𝑥2+300𝑥3+280𝑥4+340𝑥5
 → 𝑚𝑎𝑥 

  The main constraints of the problem will be:  

Freon     :                                     +0.22𝑥3          + 0.21𝑥4    + 0.26𝑥5 ≤ 125 

TL 16     :   0.20𝑥1  + 0.13𝑥2                                                          ≤ 80 

Star 200  :                                    +1.00𝑥3                                                     ≥ 150       

Star 160  :                                                   + 1.00𝑥4                      ≥ 70 
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Star 250  :                                                                               +1.00𝑥5 ≥ 290 

Totally    :  1.00𝑥1  + 1.00𝑥2       + 1.00𝑥3       + 1.00𝑥4     + 1.00𝑥5 = 750 

 Obviously, all unknown variables must be nonnegative: 

 𝑥𝑗 ≥ 0, 𝑗 = 1,2,3,4,5. 

In this LFP problem we have the objective function to be maximized, 6 main 

constraints and 5 unknown variables. Note that it would be more realistic to 

restrict variables 𝑥𝑗 to integer values. Indeed, if we solve this problem we obtain 

the following optimal solution:  

 𝑥1
∗ = 232.69, 𝑥2

∗ = 0.00,   𝑥3
∗ = 150.00, 𝑥4

∗ = 70.00, 𝑥5
∗ = 297.31 

 which means that, for example the quantity of refrigerators Lebel 220 and Star 

250 to be produced is 232.69 and 297.31 units respectively. Obviously, such an 

optimal solution cannot be applied in real life.  

 4.5 A Location Problem   

 One of the best known and most widely used discrete location models is the so-

called un-capacitated facility location problem. The problem may be described as 

follows: there is a discrete set of possible locations for given facilities, and a set 

of consumers with known demands for production to be produced. The aim of 

optimization is to find such a location for facilities which satisfies all given 

constraints for demand, and maximizes the profit or the efficiency calculated as 

the profit/cost ratio (sometimes in the special literature referred to as a 

profitability index). Facilities are assumed to have unlimited capacity (un-

capacitated facility), i.e. any facility can satisfy the demand of all consumers. In 

the case if each facility can only supply demand up to a given limit, the problem 

is called the capacitated facility location problem. 
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 In its most general form, the un-capacitated facility location problem in LFP 

form may be formulated as follows. Let I = { 1,2,…,m} denote the set of 

consumers and J = { 1, 2, ... , n} the set of sites where the given facilities may be 

located. Let also 𝑓𝑗denote the fixed cost of opening facility in site j, and 𝐶𝑖𝑗 the 

profit associated with satisfying the demand of consumeri from facility j.  

Usually, 𝐶𝐼𝐽 is a function of the production costs at site j, the demand and selling 

price of consumer i, and the transportation costs between consumer i and site j. 

Obviously, without loss of generality we can assume that the fixed costs 𝑓𝐽 are 

nonnegative. Introducing variables  

  𝑦𝑗 = {
1, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑜𝑝𝑒𝑛  𝑗 = 1,2, … , 𝑛,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 … … … … … … … … … .

}  

and 𝑥𝑖𝑗 ≥ 0 0, i = 1, 2, ... , m, j = 1, 2, ... , n, where 𝑥𝑖𝑗is an unknown fraction of 

the demand of consumer i served by facility j, we can formulate the un-

capacitated facility location problems in the following form  

𝑄(𝑥) =
𝑃(𝑥)

𝐷(𝑥)
=

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

∑ 𝑓𝑗
𝑛
𝑗=1 𝑦𝑗

→ 𝑚𝑎𝑥 

subject to 

                 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 − ∑ 𝑓𝑗𝑦𝑗 ≥ 𝑃𝑚𝑖𝑛
𝑛
𝑗=1

𝑛
𝑗=1

𝑚
𝑖=1    ____ (*) 

                 ∑ 𝑥𝑖𝑗 = 1,    𝑖 = 1,2, … . , 𝑚,𝑛
𝑗=1   

                         𝑥𝑖𝑗 ≤ 𝑦𝑗 ,   𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 

                         𝑥𝑖𝑗 ≥ 0,    𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 

                          𝑦𝑗 = 0 𝑜𝑟 1, 𝑗 = 1,2, … , 𝑛, 

where it is assumed that 𝑓𝑖 ≥ 0, j = 1, 2, ... , n, and 𝑃𝑚𝑖𝑛 > 0. Additional constraint 

(*) here guarantees a minimum profit 𝑃𝑚𝑖𝑛 .Note that the given LFP problem 



39 
 

contains the discrete unknown variables 𝑦𝑗. and hence, belongs to the class of 

integer LFP problems 
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                            CONCLUSION   

LFP Problems deals with determining the best possible allocation of available 

resources to meet certain specifications. In particular, they may deal with 

situations where a number of resources such as people, materials, machines and 

land are available and are to be combined to yield several products. In linear 

fractional programming, the goal is to determine a permissible allocation of 

resources that will maximize or minimize some specific showing, such as profit 

gained per and of cost or cost of until of product produced etc. LFP deals with 

that class of mathematical programming problems in which the relation must be 

in linear form and the function to be optimized must be a ratio of two linear 

functions. 

    In a typical maximum problem, a manufacture may wish to use available 

resources to produce several products. The manufacturer, knowing how much 

profit and cost are made for each unit of product produced, would wish to produce 

that particular combination of products that would maximize the profit gained per 

unit of cost. 

  Transportation problem comprise a special class of linear fractional 

programming. In a typical problem of this type the trucking company may be 

interested in finding the least expensive way of transporting each unit of large 

quantities of a product from a number of warehouse to a number of stores   
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