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CHAPTER 1

1. INTRODUCTION.

It is well known that graph is a very useful tool to model problems originated in
almost all areas of our life. The geometrical structure of any communication
system including Internet is based on graph. The logical setup of a computer is
designed with the help of graph. So graph theory is an old as well as young topic
of research. Depending on the geometrical structures and properties different
type of graphs have emerged, viz. path, cycle, complete graph, tree, planar graph,
chordal graph, perfect graph, intersection graph, etc.

Here, we concentrate our discussion on intersection graphs.

suppose S = {S;,5,, ... } be a set of sets. Draw a vertex (v;) for each S; and two
vertices v; and v; are joined by an edge if the corresponding sets have a non-
empty intersection, i.e. the edge E is given by E = {(vi, vj) | SinS; # (Z)}.
An undirected graph G=(V,E) is said to Dbe x-perfect if
w(G(4)) = x(G(A)),For all AcV,and G is said to be a-perfect if
a(G(A)) = k(G(A)) for all A € V where G(A) is a sub graph induced by a subset
A of vertices. A graph is called perfect if it is either x -perfect or a -perfect. It was
proved in the famous Perfect Graph Theorem that a graph is x -perfect if and only
if itis o- perfect.

An undirected graph G is called p-critical if it is minimally imperfect, i.e. G is not
perfect but every proper induced subgraph of G is a perfect graph.

An undirected graph G is called triangulated if every cycle of length strictly greater
than three possesses a chord. In the literature, triangulated graphs are also called
as chordal, rigid-circuit, monotone transitive and perfect elimination graphs.

The clique graph C(G) of a graph G is the intersection graph of the family of all
cliques of G . The intersection graphs of conformal hypergraphs are just the clique

1
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graphs. Cographs (also called complement reducible graphs) are defined as the
graphs which can be reduced to single vertices by recursively complementing all
connected subgraphs.

A graph is a comparability graph if its edges can be given a transitive orientation.
A cocomparability graph is the complement of a comparability graph.

1.1. INTERSECTION GRAPHS

Intersection graphs are very important in both theoretical as well as application
point of view. we define intersection graphs as follows.

A graph G = (V, E) is called an intersection graph for a finite family F of
a non-empty set if there is a one-to-one correspondence between F and V such
that two sets in F have non-empty intersection if and only if their corresponding
vertices in V are adjacent. We call F an intersection model of G. For an
intersection model F, we use G (F) to denote the intersection graph for F.

Depending on the nature or geometric configuration of the sets 5;, S5, ...
different types of intersection graphs are generated. The most useful intersection
graphs are

e Interval graphs (S is the set of intervals on a real line)

* Tolerance graphs

e Circular-arc graphs ( S is the set of arcs on a circle)

e Permutation graphs ( S is the set of line segments between two line segments)
* Trapezoid graphs ( S is the set of trapeziums between two line segments)

¢ Disk graphs (S is the set of circles on a plane)

e Circle graphs ( S is the set of chords within a circle)

e Chordal graphs ( S is the set of connected subgraphs of a tree)
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e String graphs ( S is the set of curves in a plane)
* Graphs with boxicity k ( S is the set of boxes of dimension k)
e Line graphs ( S is the set of edges of a graph).

It is interesting that every graph is an intersecting graph. For each vertex v; of ,
G form a set S; consisting of edges incident to v;,the two such sets have a non-
empty intersection if and only if the corresponding vertices share an edge.

An example of intersection graph is depicted in Figure 1.

Let 8, =41,23, .}, 5_.={1,—2,-38,..},5 ={23,57,14, ..}, 5 =
{1,,2,3,58,..},5. ={0,+2,+4, ..},5, = {+1,13, ...}

be the sets of positive integers, negative integers, primes, Fibonacci numbers,
even integers and odd integers respectively.

g, S,

g, S

J

FIGURE 1: An intersection graph

Some of them are discussed in the subsequent sections.
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CHAPTER 2

2. INTERVAL GRAPHS

An undirected graph ,G=(V,E) is said to be an interval graph if the vertex set V
can be put into one-to-one correspondence with a set | of intervals on the real
line such that two vertices are adjacent in G if and only if their corresponding
intervals have non-empty intersection. That is, there is a bijective mapping
f:V->L

The set | is called an interval representation of G and G is referred to as the
interval graph of 1.

Interval graphs arise in the process of modelling many real life situations,
specially involving time dependencies or other restrictions that are linear in
nature. This graph and various subclass thereof arise in diverse areas such as
archeology, molecular biology, sociology, genetics, traffic planning, VLSI
design, circuit routing, psychology, scheduling, transportation, etc. Also,
interval graphs have found applications in protein sequencing, macro
substitution, circuit routine, file organization, job scheduling , routing of two
points nets and so on. In addition to these, interval graphs have been studied
intensely from both the theoretical and algorithmic point of view.

In the following an application of interval graph to register allocation is
presented. A computer program stores the values of its variables in memory.
For arithmetic computations, the values must be entered in easily accessed
locations called registers. Registers are expensive, so we want to use them
efficiently. If two variables are never used simultaneously, then we can
allocate them to the same register, one after use of other. For each variable,
we compute the first and last time when it is used. A variable is active during
the interval between these times.
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We define a graph whose vertices are the variables. Two vertices are adjacent
if they are active at a common time. The number of registers needed is the
chromatic number of this graph. The time when a variable is active is an
interval, so we obtain a special type of representation called interval graph. Let
us consider a program segment shown in Figure 2(a).

The corresponding interval representation and interval graph are shown in
Figure 2(b) and 2(c) respectively. Note that the chromatic number of the graph
of Figure 2(c) is 4. That is, to execute this program segment of Figure 2(a), only
4 registers are required. Figure 2(d) shows the allocation of registers/colours.
Note that an interval graph can be coloured in O(n) time, where n is the
number of vertices .

Let us consider another example.

Suppose a company or an organization is interested to run its advertisement
through television channels. The constraint is that only one programme slot is
selected for advertisement at any instant. The objective of the problem is to
select the programme slots such that the sum of the number of viewers of the
selected programmes is maximum.

In this problem, a television programme slot is represented as a subinterval of
an interval of length of 24 h on the real line. Each programme slot, i.e. each
interval is regarded as a vertex of the interval graph G . That is, all the
programme slots of all television channels constitute the set of vertices V of
the interval graph G . If there exists an intersection of timings in between two
programme slots, there is an edge between the vertices corresponding to
these programme slots. If the finishing time of a programme is the starting
time of another programme then we assume that these programmes are non-
intersecting. It may be noted that any two programmes in a particular
television channel are always non-intersecting. The number of viewers of each
programme is considered as the weight of the corresponding vertex of the
graph. All the programme slots of all television channels are modelled as an
interval graph.
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for(i=0:1<=10:j++)
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(b) Interval representation of variables
for(j=1,)<8J++)
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needed
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(a) A C program segment (¢) corresponding graph (d) after colouring

FIGURE 2: An application of interval graph in register allocation

A colouring of a graph is an assignment of colours to its vertices so that no
two adjacent vertices have the same colour. The vertices of same colour
form a colour class. Any two vertices of a colour class are not adjacent. The
maximum weight colouring problem is to find a subset S of V such that no
two vertices of S are adjacent and sum of the weights of the vertices of S is
maximum. This problem is also known as maximum weight 1-colouring
problem. Thus, the above problem is equivalent to the 1-colouring problem
on interval graph. As mentioned above, all the programme slots of all
channels in a geographical area can be represented as an interval graph.
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Interval graphs satisfy a lot of interesting properties. The first one is the
hereditary property.

LEMMA 2.1. Aninduced subgraph of an interval graph is an interval graph.

PRrROOF: If {I,,}Jv€ V is an interval representation for a graph G=(V,E), then
{I,}v€ X is an interval representation for the induced subgraph Gy =(X,Ex).

The next property of interval graphs is also a hereditary property, called
triangulated graph property, which is stated below.

Every simple cycle of length strictly greater than 3 possesses a chord. The graphs
which satisfy this property are called triangulated graphs. So we have the
following lemma.

LEMMA 2.2. An interval graph satisfies the triangulated graph property.

Another important property on graphs is transitive orientation property stated
below:

Each edge can be assigned a one-way direction in such a way that the resulting
oriented graph (V,E) satisfies the following condition:

(u,v) € Eand (v,w) €EE = (u,w) € E,u,v,w €V.

LEMMA 2.3. The complement of an interval graph satisfies the transitive
orientation property.

PROOF: Let G=(V,E) be graph and let,{l,}, €y be an interval representation for
G . Let us assign an orientation A of the complement G° = (V,E€) as follows:

ViVj EAS Ivi < Ivj for all ViVj € E°

Since I,;< I,;, the interval I, lies entirely to the left of the interval I,; . Trivially, the
condition for transitive orientation property is satisfied. It follows that I,; < I; < I .
Hence, A is a transitive orientation of G€. @
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Let G=(V,E) be a graph. A set of vertices C € V forms a clique in G if every pair of
vertices in C are adjacent. A maximal clique is a clique to which no further vertex
of the graph can be added so that it remains a clique. A maximum clique is a
clique with maximum cardinality.

The following theorem posed by Gilmore and Hoffman establishes the position of
the interval graphs in the world of perfect graphs.

THEOREM 2.4. let A; and A, he maximal cliques of G.

@) These exists an edge in F with one endpoint in A; and the other endpoint

in A,
) (b) All such edges of £ connecting A; with A; have the same orientation in
F.
PROOF:

a) If no such edge exists in F, then A; U A, is a clique of G, contradicting

maximality.

b) Suppose ab € F and dc € F with a,c € A; and b,d €A,. We must show a
contradiction. If either a = c or b = d, then transitivity of F immediately
gives a contradiction; otherwise, these four vertices are distinct (Figure **),
and ad or be is in F, since F may not have a chordless 4-cycle. Assume,
without loss of generality, that ad € E; which way is it oriented? Using the
transitivity of F, ad € F (resp. da € F) would imply ac € F (resp db € F),
which is impossible, and Lemma is proved.

0 Q=——-——=—@ b

C O —tm——@ d

FIGURE **. Solid edges are in E; broken arrows denote the orientation F .
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All maximal cliques of an interval graph can be computed in O(n) time. The

maximal cliques versus vertices incidence matrix of a graph G is called clique
matrix.

The necessary and sufficient condition that a graph is an interval graph is stated
below:

THEOREM 2.5. A graph is an interval graph if and only if it contains none of the
graphs shown in Figure 3 as an induced subgraph.

1 2
n
n>3J)
I 2 #=E= N 1. & e n

(n>1) (n>0)
FIGURE 3: Forbidden structure for interval graphs.

G’

COROLLARY 2.6. Atreeis aninterval graph if and only if it does not contain
G* (Figure 3) as an induced subgraph.

Let G=(V,E) , where |[V| = n, |E| = m be a simple connected interval graph,
where vertices are numbered as 1, 2, n ,.... Let I = {I;, I,, ..., I,,} be the interval

representation of an interval graph G, where a, is the left end point and the b, is
the right endpoint of the interval I, , i.e. I = [a,, b,.] forallr=1,2,..n.

Without any loss of generality we assume the following:

e Theintervalsin I are indexed by increasing right endpoints,
|e bl < bz < s < b'}’l
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* The intervals are closed, i.e. contains both of its endpoints and that no two

intervals share a common endpoint.
e Vertices of the interval graph and the intervals on the real line are one and

the same thing.
e The interval graph G is connected and the list of sorted endpoints is given.

An interval graph and its interval representation are illustrated in Figure 4.
A lot of algorithms have been designed for interval graphs using different

techniques.

[ o)
N
QC

111111111111111111111111111
I Ll Ll LI | T T Ll LI Ll T T T LI T T T LI T T Ll LI | 1

| D 10 15 20 25

FIGURE 4 : Aninterval graph and its interval representation.

2.1. COLORING INTERVAL GRAPHS

To find a coloring of the vertices of the interval graph . Each color could be
thought of as being a different room, and each course needs to have a room: if
two classes conflict, they have to get two different rooms, say, the brown one and
the red one. We may be interested in a feasible coloring or a minimum coloring —
a coloring that gives the fewest number of possible classrooms.

10
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Those who are familiar with algorithms know that some problems are hard and
some of them are not so hard, and that the graph coloring problem “in general ”
happens to be one of those hard problems. If | am given a graph with a thousand
vertices with the task of finding a minimum feasible coloring, i.e., a coloring with
the smallest possible number of colors, | will have to spend a lot of computing
time to find an optimal solution. It could take several weeks or months .The
coloring problem is an NP- complete problem, which means that, in general, it is a
difficult, computationally hard problem, potentially needing an exponentially long

period of time to solve optimally.

However, there is good news in that we are not talking about any kind of graph.
We are talking about interval graphs, and interval graphs have special properties.
We can take advantage of these properties in order to color them efficiently. | am
going to show you how to do this on an example.

Suppose we have a set of intervals, as in Figure 5. You might be given the intervals
as pairs of endpoints, [1,6],[2,4],[3,11] and so forth, or in some other format like a
sorted list of the endpoints shown in Figure 5.1. Figure 5 also shows the interval
graph. Now we can go ahead and try to color it. The coloring algorithm uses the
nice diagram of the intervals in Figure 5.1, where the intervals are sorted by their
left endpoints, and this is the order in which they are processed. The coloring
algorithm sweeps across from left to right assigning colors in what we call a
“greedy manner”. Interval a is the first to start — we will give it a color, solid
“black”. We come to b and give it the color “dashes”, and now we come to ¢ and
give it the color “dots”. Continuing across the diagram, notice “dashes” has
finished. Now we have a little bit of time and d starts. | can give it “dashes” again.
Next “black” becomes free so | give the next interval, e, the color “black”. Now |
am at a trouble spot because “dots”, “dashes” and “black” are all busy. So | have
to open up a new color called “brown” and assign that color to interval f. |
continue coloring from left to right and finally finish at the end. This greedy
method gives us a coloring using 4 colors. Can we show that the greedy method
gives the smallest possible number of colors? The answer to these questions is

i n

yes”.

11
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= }1.0] &

[
b= [24]
c= [3,11] d
d = [5,9]
e = [7,14]
f=[8,12] .
g = [10,16)
h = [13,15] h G S

Figure5. A set of intervals and the corresponding (colored) interval graph

Since this is a mathematics lecture, we must have a proof. Indeed, the greedy
method of coloring is optimal, and here is a very simple proof. Let k be the
number of colors that the algorithm used. Now let’s look at the point P, as we
sweep across the intervals, when color k was used for the first time. In our
example, k =4 and P =8 (the point when we had to open up the color “brown”.)
When we look at the point P, we observe that all the colors 1 through k-1 were
busy, which is why we had to open up the last color k. How many intervals
(lectures) are alive and running at that point P? The answer is k. | am forced to use
k colors, and in the interval graph, they form a clique of size k. Formally, (1) the
intervals crossing point P demonstrate that there is a k-clique in the interval graph
— which means that at least k colors are required in any possible coloring, and (2)
the greedy algorithm succeeded in coloring the graph using k colors. Therefore,
the solution is optimal.

12
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e

.............................................

g b ¢ ¥ 8 o € F & g B € K F

Figure 5.1: A sorted list of end points of the interval in Figure 5

A very useful data structure called interval tree (IT) is defined below

2.2.INTERVAL TREE

For each vertex V € v let H(v) and L (v) represent respectively the highest and the
lowest numbered adjacent vertices of v. It is assumed that (v,v) € V is always
true. So, if no adjacent vertex of v exist with higher (or lower) IG order than v then

H(v) (or L(v) ) is assumed to be v. In other words,
H(v)=max{u: (u,v) € E,u = v}, and
L(v)=min{u: (u,v) € E,u < v}.

It may be observed that the array H is monotonic non-decreasing, i.e. if u,v € V,
and u < v then H(u) < H(v).

For a given interval graph G let a spanning subgraph G’ = (V, E) be defined as
E'={(w,v):u € Vand v = H(u),u # n}.

13
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The subgraph G’ of a connected interval graph G is a tree. Since the subgraph G’ is
built from the vertex set V and the edge set E', where E'C E, G" is a spanning tree
of G. In what follows the subgraph G’ is referred to as interval tree and it is
denoted by T;(G).

The interval tree T;(G) of the interval graph of Figure 4 is shown in Figure 5. The
level of a vertex u in the interval tree is denoted by level;(u) . Let N; be the set of
vertices which are at a distance i from the vertex n, i.e.N; is the set of vertices at
level i. Thus N; = {u: §;(u,n) = i} and N, is the singleton set {n}. It may be
noted that if u € N;then level; = i. Let k be the maximum length of a shortest
path from the vertex n to any other vertex in G . It is easy to see that Ny, is non-
empty while N4 is empty.

2.3. K-GAP INTERVEL GRAPH

A multiple interval representation f of a graph G=(V,E) is a mapping
that assigns to each vertex of G a non-empty collection of intervals on the real
line, such that two distinct vertices u and v are adjacent if and only if there are
intervals] € f(u)andJ € f(v) withIn] = @. |f(v)| denotes the number of
intervals associated to v . The interval number of G is defined as
1(G) = min{max,cy{|f (v)|}: fis a multiple interval representation of G} .

The total interval number of a graph G= (V,E) is defined as
[(G) = min{ X,epllf (W)|}: f is a multiple interval representation of G}

A new generalization of interval graphs called t-interval graphs is introduced
by Trotter and Harary , and Griggs and West. A graph G is called t-interval graphs
if i(G) < t.Thet-interval graphs are applicable in scheduling and resource
allocation, communication protocols, computational biology, monitoring , etc.

The class of t-interval graph is richer than interval graphs, for example, the
class of 2-interval graphs include circular-arc graphs, outerplanar graphs, cubic
graphs, line graphs and 3-interval graphs include all planar graphs . The class of
graphs with maximum degree A are |(A + 1) /2] -interval graphs, while the

14
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complete bipartite graph K, ,, is a [(mn + 1) /(m + n)| -interval graph. Every
graph with n vertices is a [(n + 1) /4] -interval graph.

Definition. The k -gap interval graph is a graph that have a multiple interval
representation whose total number of intervals exceed the number of vertices by
at most k, i.e. a graph G on n vertices is a k -gap interval graph if I(G) < n + k.

In a k -gap interval graph with multiple interval representation f, a vertexv € V
hasagapif |[f(v)| = 2.

A k -gap interval graph can be obtained from an interval graph by a sequence of at
most k operations of identifying pairs of vertices. A multiple interval
representation of G has k gaps if Y,ev|lf(V)| = V]| + k.

A graph G=(V,E) is an interval+kv graph if there is a vertex set X € Vwith |X| < k,
such that G\X ia an imterval graph . The vertex set X is called as interval deletion
set of G.

LEMMA 2.3.1. Aninterval+kv graph of n vertices has 0 (n2*) maximal cliques.

2.4. DOTTED INTERVAL GRAPHS.

A dotted interval I(s, t, d) is an arithmetic progression {s, s+d,s+2d,.., tg},
where s ,t and d are positive integers and d is called the jumb . When d=1, the
dotted interval I(s, t, d) is simply the ordinary interval [s ,t] over the positive
integer line . A dotted interval graph is an intersection graph of dotted intervals.
Like interval graph, for each dotted interval [,, there is a vertex v if [, # ¢ the
there is an edge between the vertices u and v .If the jumps of all intervals are at
most d, then the graph is called the d -dotted-interval (d -DIG).

An example of 2-dotted interval graph is shown in Figure 6. In this figure we
consider five dotted intervals I, =1(1,5,2) ={1,3,5}, I, =1(2,3,1) ={2,3},
I.=1(1,7,2) ={1,357}1;, =1(462) ={4,6 },1, =1(6,8,2) = {6,8}. Note
that each dotted interval is a set of integers and each set of integers forms an
arithmetic progression.

15
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Figure 6: A set of dotted intervals and corresponding 2-dotted interval graph

THEOREM 2.4.1. Every graph with a countable number of nodes is a dotted
interval graph.

THEOREM 2.4.2. Foralld > 1,d-DIG < (d + 1)-DIG.

2.5. RELATED FAMILIES OF INTERVAL GRAPH

Based on the fact that a graph is an interval graph if and only if it is chordal and its
complement is a comparability graph, we have: A graph and its complement are
interval graphs if and only if it is both a split graph and a permutation graph.

The interval graphs that have an interval representation in which every two
intervals are either disjoint or nested are the trivially perfect graphs.

A graph has boxicity at most one if and only if it is an interval graph; the boxicity
of an arbitrary graph G is the minimum number of interval graphs on the same set
of vertices such that the intersection of the edges sets of the interval graphs is G.

I. PROPER INTERVAL GRAPHS

Proper interval graphs are interval graphs that have an interval representation in
which no interval properly contains any other interval; unit interval graphs are the

16
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interval graphs that have an interval representation in which each interval has
unit length. A unit interval representation without repeated intervals is
necessarily a proper interval representation. Not every proper interval
representation is a unit interval representation, but every proper interval graph is
a unit interval graph, and vice versa. Every proper interval graph is a claw-free
graph; conversely, the proper interval graphs are exactly the claw-free interval
graphs. However, there exist claw- free graphs that are not interval graphs. An
interval graph is called g-proper if there is a representation in which no interval is
contained by more than q others. This notion extends the idea of proper interval
graphs such that a O-proper interval graph is a proper interval graph.

Il. IMPROPER INTERVAL GRAPHS

An interval graph is called p-improper if there is a representation in which no
interval contains more than p others. This notion extends the idea of proper
interval graphs such that a O-improper interval graph is a proper interval graph.

. K—NESTED INTERVAL GRAPHS

An interval graph is k-nested if there is no chain of length k+1 of intervals nested
in each other. This is a generalization of proper interval graphs as 1-nested
interval graphs are exactly proper interval graphs.

IV. CIRCULAR ARC GRAPH

The intersection graphs obtained from collections of arcs on a circle are called
circular-arc graphs. A circular-arc representation of an undirected graph G which
fails to cover some point p on the circle will be topologically the same as an
interval representation of G. Specifically, we can cut the circle at p and straighten
it out to a line, the arcs becoming intervals. It is easy to see, therefore, that every
interval graph is a circular-arc graph. The converse, however, is false. In fact,
circular-arc graphs are, in general, not perfect graphs.

17
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CHAPTER 3

3. TRAPEZOID GRAPHS

A trapezoid T; is defined by four corner points [a;, b;, ¢;, d;], where a; < b; and

¢; < d; with a;, b; lying on top line and c;, d; lying on bottom line of a rectangular
channel. An undirected graph G= (V,E) with vertex set V = {v,,v,, ..., .} and
edge set E = {e;, e,, ..., e, } is called a trapezoid graph if a trapezoid
representation can be obtained such that each vertex v, in V corresponds to a
trapezoid T, and (v;, v;) € E if and only if the trapezoids T; and T; corresponding
to the vertices v; and v; intersect. For simplicity the vertices v, v,, ..., v, are
represented respectively by 1, 2, ..., n. Thus the edge (i,j) € E ifand only if T;
and T; intersect in the trapezoid representation. Figure 15 illustrates a trapezoid
graph and its trapezoid representation consisting of seven trapezoids 74, T5, ..., T
. Itis interesting to note that if a; = b; and ¢; = d; then the corresponding
trapezoid T; reduces to a straight line. So, in this way, if all the trapezoids reduce
to straight lines the corresponding trapezoid graph reduces to nothing but a
permutation graph. For simplicity, we assume that the corner points on the
trapezoid representation are all distinct and so they can be given consecutive
positions 1,2,...,n from left to right on both channels. In addition to this we may
label these n trapezoids in increasing order of their right corner points on top
channel, i.e. for two trapezoids Tiand Tj, i < j if and only if b; lies on the left of b;.

Trapezoid graphs can be recognized in0(n?) time.Trapezoid graphs can be used
for modelling a channel routing problem in VLS|, in a single-layer-per-net model.
A channel consists of a pair of horizontal lines with points or terminals on each
line numbered from 1 to n. All the terminals with the same label constitute a net.
A routing is a connection of every net by wires inside the channel such that no
two wires from different nets overlap (see Figure 16). A routing is allowed to use
more than one layer. This channel routing problem is equivalent to the minimum
colouring problem of a trapezoid graph, where each net is represented by a
trapezoid. The single module k -planer (i.e. k layers) subset problem in VLSl is to
assign maximum possible nets in k layers inside a channel in such a way that no
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two nets, assigned in any of the k layers overlap each other where the routing
region is either a channel or bounded by a straight line and a solid module. A
trapezoid graph with n vertices can be represented geometrically either by,

1. A set of n trapezoids drawn inside a rectangular channel or by,
2. A set of n segments drawn on a two dimensional plane or by,
3. A set of n boxes drawn on a two dimensional plane or by,

4. A permutation diagram mt of n 2 lines drawn inside a channel.
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Figure 15: A trapezoid graph G and its trapezoid representation
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3.1. TRAPEZOID REPRESENTATION

Let T = {T,, T, ..., T,,} be the set of n trapezoids where trapezoid T; is
represented in the trapezoid representation by four corner points

la;, b;; ¢;, dil, a;, bi(a; < b;) lying on the bottom line of a rectangular channel
(see Figure 16). Without any loss of generality we assume the following:

1. A trapezoid contains four distinct corner points and that no two trapezoids
share a common end point,

2. Trapezoids in the trapezoid representation and vertices in the trapezoid graph
are one and same thing,

3. The trapezoids in the trapezoid representation T are indexed by increasing
right end points on the top line, i.e. for any two trapezoids T; and T;in the
trapezoid representation i<j if and only if b; < b;.

(h)
Figure 16: (a) A routing instance, where the routing region is a channel. (b) A routing
instance, where the routing region is bounded by a straight line and a module.

This kind of ordering gives the following result which is quite useful in designing
efficient algorithms.

In a trapezoid graph G if any three verticesi,j,k are such thati<j<kand (i,k) €EE,
then either (i,j) € E, or (j,k) € E . This ordering is sometimes called as
cocomparability ordering. In a cocomparability graph this ordering can be
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implemented in an 0(n?) time. But for a trapezoid graph, this ordering can be
implemented in only O(n) time with the help of its trapezoid representation .

The adjacency relation between any two vertices can be tested using the
following result:

Let i and j be two vertices of a trapezoid graph G . Then two vertices i and
j are not adjacent if and only if either

(i) bi<ajand di<¢or(ii) bj<ajand dj<c;. Otherwise the verticesiand j
are adjacent.
Therefore, instead of storing a trapezoid graph, using adjacency matrix
or adjacency list, one can store the trapezoid representation of the
trapezoid graph using only n4 units of memory. The adjacency relation
can be tested in O(1) time.

3.2. PERMUTATION REPRESENTATION

From trapezoid representation of a trapezoid graph a permutation diagram can
be obtained with the use of the concept of vertex splitting. In a trapezoid graph,
the vertex splitting process replaces each vertex v by two new vertices v; and v,
where in the trapezoid representation the trapezoid representing v is replaced by
two lines representing v; and v, respectively. Thus it may be seen that the
trapezoid representation is evolving into a permutation graph representation.

The concept of vertex splitting was first introduced by Cheah and Corneil .
They also proved that a graph is a trapezoid graph if and only if after an
appropriate sequence of vertex splitting a permutation graph is obtained with a
specific condition. Thus with the use of the concept of vertex splitting a trapezoid
representation of n trapezoids will be transformed to a permutation diagram rt of
2n lines.Trapezoid graphs are weakly chordal. All cut vertices of a trapezoid graph
can be computed correctly in o(n) time.The very common problem in graph
theory is all pairs shortest path problem. This problem has been solve for
trapezoid graph . The time complexity needed to find all pairs shortest distances is
stated below.The time complexity to find all pairs shortest distances on trapezoid
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graphs is O(n%) .The time complexity to find the next-to-shortest path between
any two vertices u and v in trapezoid graph is O(n”) .All maximal cliques of a
trapezoid graph can be generated in O(n? + yn) time, where n is the number of
vertices of the graph and y is the output size.

A
/ \ L8 V4 f N
4 1 / \
{I', " & ,“/ \\
/ 1 * -~ ~ " \\A
/ : AQ—J— o N\
/ 6 /7 - N\
L \ =5
- \»\ ‘,’ -
/
(a) = \‘*/, :
~ ] 1 o \’,-.-_/-.. ‘(/ ‘,1 ’; ~ —
v e (& . \J
/ ~ > / \,
(c) 4 e » ].; L X
4 P . - s / \
S o o \
/ - /
/ ]" J > P o -9 / )
7 \
a h.
= 3
i
3
6
[4] 2
(d) cp di

Figure 18: (a)The trapezoid graph of Figure 15 when vertices are given the dominance
order F; (b) The dominance order F, (c) Its trapezoid representation and (d) Its box

representation.

All maximal independent sets of a trapezoid graph G with n vertices can be
computed in O (mm + an) time, where m and a denote respectively the total
number of edges in G, the complement graph of the graph G, and the number of
maximal independent sets in G .The maximum weight k -independent set problem
can be solved for trapezoid graph in O(kn?) time. In particular, maximum weight
2-independent set problem can be solved in O(n?) time.

A clique of an undirected graph G=(V,E) is a complete subgraph of G, and a
clique cover of G is a partition of V such that each set in the partition is a clique. A
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clique cover with the minimum cardinality k(k < n) is known as a minimum
clique cover (MCC). This number k is called the clique cover number.

The minimum clique cover is a well known NP-complete problem on general
graphs . However, it can be solved in polynomial time for some special classes of
graphs, like chordal graphs, interval graphs, circular-arc-graphs, circular
permutation graph, etc.

A minimum clique cover of the trapezoid graph G can be computed in O(n?) time.
The diameter and center of a trapezoid graph G=(V,E) can be computed in O(dn)
time where d is the degree of vertex 1.

It is shown that every connected AT-free graph contains a dominating pair and
the vertices which achieve the diameter are said to form a dominating pair. As
trapezoid graphs belong to a subclass of AT-free graphs so the following results.

Every trapezoid graph has at least one dominating pair.The vertices u,v of a
trapezoid graph form a dominating pair if § (u, v) = diam(G).

A diameter path in a graph is a shortest path whose length is equal to the
diameter of the graph. If P(u,v) is a diameter path in a trapezoid graph G, then
P(u,v) is minimum connected dominating path.Dominating pairs and minimum
connected dominating paths of a trapezoid graph can be computed in O(dn) time.

The set of all hinge vertices of a trapezoid graph with n vertices can be computed
in O(n logn) time using O(n) space.

A spanning tree of a trapezoid graph can be computed in O(n) time.

The time complexity to find tree 4-spanner on trapezoid graphs is O(n) .The time
complexity to find tree 3-spanner on trapezoid graphs is O(n’) .

The minimum cardinality conditional covering set on trapezoid graphs can be
determined in O(n?) time.
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3.3. BOX REPRESENTATION

If x = (%, x,)and y = (y,,¥,) are points in R%, then x is said to be dominated
by vy, denoted as x< vy, if x; is less than y; for i=1,2. . The order thus given between
points in R? is called dominance order. This order can be extended to boxes, i.e.
sets of the form {(x,, x,) € R*:l; < x; < uy, 1, < x, < uy}where (14, 1,) is the
lower corner and (uy, u;) is the upper corner of the box.

A box b dominates another box b’ if the lower corner of b dominates the upper
corner of b’. Note that points may be understood as boxes where the lower and
upper corner coincide. If one of the two boxes dominates the other we say that
they are comparable. Otherwise they are incomparable. Now the vertices of a
trapezoid graph may be represented by boxes with two boxes incomparable if
and only if the corresponding vertices are joined by an edge.

In Figure 18, the trapezoid graph of Figure 15 is illustrated with a dominance
order GP and its trapezoid representation, box representation are also given in
the same figure. It is easy to observe that with the use of dominance order the
vertices 6,7 4,5,2,3,1, in Figure 15 are renamed as vertices 7,5 6,3,4,2,1,
respectively in Figure 18.

What makes the box representation useful is the additional dominance order on
boxes that may be exploited by sweep line algorithms, where all computations
are done in a single sweep.

3.4. BIOTOLERANCE REPRESENTATION

Bitolerance graphs are incomparability graphs of a bitolerance order. An order
is a bitolerance order if and only if there are intervals |, and real numbers t1(x) and
t,(x) assigned to each vertex x in such a way that x <y if and only if the overlap of
Iy and |, is less than both t,(x) and t;(y) and the center of I, is less than the center
of I,. In 1993, Langley showed that the bounded bitolerance graphs are equivalent
to the class of trapezoid graphs.
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3.5. RELATION TO OTHER FAMILIES OF GRAPHS

The class of trapezoid graphs properly contains the union of interval and
permutation graphs and is equivalent to the incomparability graphs of partially
ordered sets having interval order dimension at most two. Permutation graphs
can be seen as the special case of trapezoid graphs when every trapezoid has zero
area. This occurs when both of the trapezoid’s points on the upper channel are in
the same position and both points on the lower channel are in the same position.

Like all incomparability graphs, trapezoid graphs are perfect.

I. CIRCLE TRAPEZOID GRAPHS

Circle trapezoid graphs are a class of graphs proposed by Felsner et al. in 1993.
They are a superclass of the trapezoid graph class, and also contain circle graphs
and circular-arc graphs. A circle trapezoid is the region in a circle that lies between
two non-crossing chords and a circle trapezoid graph is the intersection graph of
families of circle trapezoids on a common circle. There is anO (n?) algorithm for
maximum weighted independent set problem and an O(n?logn) algorithm for
the maximum weighted clique problem.

II. K-TRAPEZOID GRAPHS

k-Trapezoid graphs are an extension of trapezoid graphs to higher dimension
orders. They were first proposed by Felsner,and they rely on the definition of
dominating boxes carrying over to higher dimensions in which a point x is
represented by a vector (x4, ..., Xj) . Using (k - 1)-dimensional range trees to
store and query coordinates, Felsner’s algorithms for chromatic number,
maximum clique, and maximum independent set can be applied to k- trapezoid
graphs in O(nlog*~'n) time.
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CHAPTER 4

4. CIRCULAR — ARC GRAPHS.

A Circular-arc graph (see Figure 19) is an intersection graph of arcs on the circle.
That is, every vertex is represented by an arc, such that two vertices are adjacent
if and only if the corresponding arcs intersect. The arcs constitute a circular-arc
model of the graph. Circular-arc graphs generalize interval graphs which are the
intersection graphs of intervals on the line. A graph G is a circular-arc graph if it
has a circular-arc model. Note that a circular-arc graph may have more than one
model.

Circular-arc graphs can be used to model objects of a circular or a repetitive
nature. Recent applications of circular-arc graphs are in modeling ring networks
and item graphs of combinatorial auctions.

( b
\\\ Z [ | \
‘ ”) ¢I|
/ \ )
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Figure 19: A circular-arc graph and a circular -arc model of it.The model and the

graph are also proper circular-arc and unit circular-arc.

A circular-arc model in which no arc covers another arc is a proper circular-arc
model. A graph G is a proper circular-arc graph if it has a proper circular-arc
model. A circular-arc model in which all arcs are of the same length is a unit
circular-arc model. A graph G is a unit circular-arc graph if it has a unit circular-arc
model. Every unit circular-arc graph is a proper circular-arc graph.

There are four possible types of intersections between two arcs x and y.

e Cross: Arc x contains a single endpoint of arc y (see Figure 20 (a)).
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e Cover the circle: Arcs x and y jointly cover the circle and each contains both
endpoints of the other (see Figure 20 (b)).

® Arc x is contained in arcy.
e Arc x contains arcy (see Figure 20 (c)).
In addition, if x and y do not intersect then they are disjoint (see Figure 20 (d)).

If x and y either cross or cover the circle, we say that x and y overlap. In a proper
circular-arc model, every pair of arcs that intersect, overlap each other. The
relations between the different intersection types is illustrated in Figure 21.

Let u and v be a pair of adjacent vertices in G. The arc representing u can contain
the arc representing v in a circular-arc model of G if and only if N[u] € N[v]. Such a
relation between u and v is called a neighborhood containment relation. The arc
representing u can cover the circle with the arc representing v in a circular-arc
model of G if and only if for every w & N[u] the arc representing w can be
contained in the arc representing u.

If G is a circular-arc graph without a universal vertex, and without pair of vertices
with the identical neighborhoods, then G has a circular-arc model g such that for
every pair of arcs x and y, if x can contain y then it does so in g, and if x can cover
there circle with y then it does so in g. Such a circular-arc model is called a
normalized model.

For convenience, we refer to the vertices of G as arcs even before we decide if G
is a circular-arc graph and find a model for it. We say that two adjacent vertices
intersect even before we have a model, because the arcs of adjacent vertices
must intersect in every model. If G has a normalized model we say that v contains
u when N[u] c NJv], even before we have found a model. Additionally, if the arcs
representing u and v cover the circle in a normalized model of G, we say thatu
and v cover the circle. We also say that two vertices overlap when they intersect
but do not contain each other. If u and v overlap but do not cover the circle we
would say that u and v cross.
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To simplify we refer to the clockwise direction as right and to the
counterclockwise direction as left, as we view them if we stand at the center of
the circle.

In a circular-arc graph G with a circular-arc model g, every vertex v € V (G) has an
arc in o with two endpoints. We denote the left endpoint of v by [(v) and the
right endpoint of v by r(v). If the arc x crosses the arc y and covers r(y) then x
overlaps the right side of y. Analogously, if the arc x crosses the arc y and covers
[(y) then x overlaps the left side of y.

The arcs in circular-arc models and proper circular-arc models may be either open
or closed. For unit circular-arc models it makes a difference if an arc is open or

closed. We assume that all arcs are closed. Our results also hold when all arcs are
open. If arcs may be either open or closed then every proper circular-arc graphs is

a unit circular-arc graph.

-

a) Cross b) Cover the circk ¢) Containment 1) Disjoint

Figure 20: Intersection types of two arcs in circular- arc model.
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Pair of arcs

Disjoint Intersect
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Cover the circle Cross

Figure 21: The relation between intersection types of arcs in a circular- arc model.

4.1. PROPER CIRCULAR — ARC GRAPHS

A circular-arc model in which no arc contains another arc is called a proper
circular-arc model. A circular-arc graph that has a proper circular-arc model is a
proper circular-arc graph.

Recognizing these graphs and constructing a proper arc model can both be
performed in linear (0(11 + m)) time.

4.2. UNIT CIRCULAR — ARC GRAPHS

A circular-arc model in which all arcs are of the same length is called a unit
circular-arc model. A circular-arc graph that has a unit circular-arc model is a unit
circular-arc graph

The number of labeled unit circular —arc graphs on n vertices is given by
(n+1)(3 ) —221,

n-1

By definition, every unit circular-arc graph is a proper circular-arc graph.
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4.3. HELLY CIRCULAR — ARC GRAPHS

G is a Helly circular-arc graph if there exists a corresponding arc model such that
the arcs constitute a Helly family. Gavril gives a characterization of this class that
implies an 0(n®) recognition algorithm.

Joeris et al. gives other characterization of this class,which imply a recognition
algorithm that runs in O(n + m) time when the input is a graph. If the input
graph is not a helly circular —arc graph ,then the algorithm returns a certificate of
this fact in the form of a forbidden induced subgraph.
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CONCLUSION

The goal of this talk has been to give you a feeling for the area of intersection
graph, how it is relevant to applied mathematics and computer science, what
applications it can solve, and why people do research in this area.

In the world of mathematics, sometimes | feel like a dweller, a permanent
resident; at other times as a visitor or a tourist. As a mathematical resident, | am
familiar with my surroundings. | do not get lost in proofs. | know how to get
around .Yet, sometimes as a dweller, you can become jaded, lose track of what
things are important as things become too routine. This is why | like different
applications that stimulate different kinds of problems. The mathematical tourist,
on the other hand, may get lost and may not know the formal language, but for
him everything is new and exciting and interesting. | hope that my lecture today
has given both the mathematical resident and the mathematical tourist some
insight into the excitement and enjoyment of doing applied research in graph
theory and algorithms.
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