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INTRODUCTION 

 
Dynamics is a time evolutionary process. Long term predictions of some systems often become impossible. Even 

this trajectories cannot be represented by usual geometry. It may happen that small differences in the initial 

produce very great ones in the final phenomena. 

Dynamical system is a branch of mathematics in which a function describes the time dependence of a point in a 

geometrical space. Such process occurring all branches of science. At any given time, a dynamical system has a 

state given by a triple of real numbers that can be represented by a appropriate state space. The evolution rule if 

dynamical system is a function that describes what future states follow from the current state. Often the function is 

a deterministic that is, for a given time interval only one future state follows from the current state. For example, 

the motion of the stars and the galaxies in the heaven , the stock market . The changes chemicals undergo, the rise 

and fall of population and the motion of simple pendulum, the flow of water in a pipe are classical examples of 

dynamical systems in chemistry , biology and physics .Some dynamical systems are predictable, whereas others are 

not . We know that sun will rise tomorrow and when you add cream to a cup of coffee, the resulting chemical 

reaction will not be an explosion. On the other hand predicting the weather a month from now seems impossible. 

We might think that the reason for this unpredictability is that there are simply too many variations present in the 
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meteorological or economic system. That is indeed true in these cases, but this is by no means the complete 

answer. One of the remarkable discoveries of the twentieth century mathematics is that very simple systems, even 

systems depending on only one variable, may behave just as unpredictably as the stock market, just as wildly as a 

turbulent waterfall and just as violently as a hurricane. The culprit, the reason for this unpredictable behaviour has 

been called ”chaos” 

 

 
Theory of chaos  

 
 
Chaos is a part of mathematics . It looks at certain systems that are very sensitive and is a state of utter confusion 

and disorder . It teaches us to expect the unexpected . Chaotic motion are unpredictable . A very small change may 

make the system behave completely differently . The simple looking phenomenon such as the smoke column rising 

in still air from cigarette , the oscillations and their layers in the smoke column and so complicated to defy 

understanding. 

Thus Chaos theory is the branch of mathematics focussing on the be- haviour of dynamical systems that are highly 

sensitive to initial condition. Let us first have an idea about what we mean by chaos in the mathematical sense. 

Suppose we start with a process or an equation with a certain number and end up with a final number. The number 

we start with is called is the initial condition and the number we end with is called the result. Suppose we start with 

1 and end up with 10. Let us change the initial condition slightly and start with 1.1 instead of 1. If we go through 
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the same process mathe- matically, suppose we get a result close to 10 eg, 10.3 or 10.5. In this case everything 

would be normal and predictable. Obviously there is no chaos. But suppose the result obtained is 12 or 15 or even 

20, in this case the result is totally different from 10 and there is a huge difference. Changing the initial condition 

slightly from 1 to 1.1, results in totally different answers. Clearly, this is not predictable. This is exactly what we 

mean by chaos. In this case we say that the process is chaotic. 
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CHAPTER 1 

 HISTORY OF CHAOS THEORY 

 
 

Edward Lorenz was an early pioneer of the theory. His interest in chaos came about accidentally through his work 

on weather prediction in 1961.Lorenz was using a simple digital computer, a Royal McBee LGP-30, to run his 

weather simulation. He wanted to see a sequence of data again, and to save time he started the simulation in the 

middle of its course. He did this by entering a printout of the data that corresponded to conditions in the middle of 

the original simulation. To his surprise, the weather the machine began to predict was completely different from  

the previous calculation. Lorenz tracked this down to the computer printout. The computer worked with 6-digit 

precision, but the printout rounded variables off to a 3-digit number, so a value like 0.506127 printed as 0.506. This 

difference is tiny, and the consensus at the time would have been that it should have no practical effect. However, 

Lorenz discovered that small changes in initial conditions produced large changes in long-term outcome. 

 
 PRELIMINARY DEFINITIONS. 

We know that there are many kinds of problems in science and mathematics that involve iteration. Iteration means 

to repeat a process over and over. In dynamics, the process that is repeated is the application of a function. To 

iterate a function means to evaluate the function over and over, using the output of the previous application as the 

input for the next. Mathematically, this is the process of repeatedly composing the function with itself. For example 
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let F be a function. Then F
2
(x) is the second iterative of F namely F(F(x)), F

3
(x) is the third iterative of F i.e 

,F(F(F(x))) and in general F
n
 (x) is the n-fold composition of F with itself. 

Suppose let F(x) = x
2
 + 1, then 

F
2
(x) = (x

2
 + 1)

2
 + 1 

F
3
(x) = ((x

2
 + 1)

2
 + 1)

2
 + 1 

It is important to realise that F
n
(x) does not mean raise F(x) to the n

th
 power, rather F

n
(x) is the n

th
 iterate of F 

evaluated at x. 

 
 ORBITS 

 

Given x0 ∈ R, we define the orbit of x0 under F to be the sequence of points 

x0, x1 = F(x0), x2 = F
2
(x0), ... , xn = F

n
(x0), ... 

The point x0 is called the seed of the orbit. 

For example : 

1. If F(x) = √x and x0 = 256, the first few points on the orbit of x0 are 

x0 = 256 
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x1 =√256 = 16 

x2=√16 = 4 

x3=√4 = 2 

x4= √2 = 1.414... 

2. If S(x) = sin(x), the orbits of x0 = 123 is 

x0 = 123 

x1 = -0.4599 

x2 = -0.4439 

. 

. 

. 

. 

x300 = -0.0975 

x301 = -0.0974 

. 

. 

. 

(Note that here x is given in radians, not in degrees.) 

Slowly the points on this orbit tends to 0. 
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3. If C(x) = cos(x), then the orbit of x0 = 123 is 

x0 = 123 

x1 = -0.8879 

x2 = 0.6309 

. 

. 

. 

. 

x50 = 0.739085 

x51 = 0.739085 

x52 = 0.739085 

. 

. 

. 

After a few iterations, this orbit seems to stop at 0.739085. 
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 TYPES OF ORBITS 

 FIXED POINT ORBIT 

 
 
A fixed point is a point x0 that satisfies F(x0) = x0. Also F

2
(x0) = F(F(x0))= F(x0) = x0. So in general, F

n
(x0) = x0. So 

the orbit of a fixed point is the constant sequence x0, x0, x0,. A fixed point never moves. As its name implies, it is 

fixed by the function. For example 0, 1 and -1 are all fixed points for F(x) = x
3
 , while only 0 and 1 are fixed points 

for F(x) = x
2
.Fixed points are found by solving the equation F(x) = x. Thus F(x) = x

2
- x - 4 has fixed points at the 

solutions of x
2
- x - 4 = x 

=⇒ x2
- 2x - 4 = 0 

=⇒ x = 2±√4 + 16/2 

=⇒ x = 2±√20/2 

=⇒ x = 2±2√5/2 

=⇒ x = 1±√5 

Fixed points may also be found geometrically by examining the intersection of the graph with the diagonal line  y = 

x. For example, the following figure shows that the only fixed points of S(x) = sin(x) is at x0 = 0, since that is the 

only point of intersection of the graph of S with the diagonal y = x. 

Similarly C(x) = cos(x) has a fixed point at 0.739085 as shown here. 
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Figure 1: The fixed point of S(x) = sin x is 0. 

 
 

There are two markedly different types of fixed points, attracting and repelling fixed points. Consider F(x) = x
2
 , it 

has two fixed points 0 and 1. If we choose any x0 with |x0| < 1, then the orbits of x0 rapidly approaches zero. 

For example, the orbit of 0.1 is 0.1, 0.01, 0.0001, 0.00000001, .... 

In fact any x0 with 0 ≤ x0 < 1, no matter how close to 1, leads to an orbit that tends far from 1 close to 0. For 

example the orbit of 0.9 is 

0.9, 0.81, 0.6561, 0.430467, ...., 0.00117, ... 
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More precisely if 0 ≤ x0 < 1, then F
n
(x0) → 0 as n → ∞. On the other 

 

 

 

 

 
 

 

 
Figure 2: The fixed point of C(x) = cos x is 0.739085… 

hand if x0 > 1, then again the orbit moves far from 1. For example, the orbit of 1.1 is 1.1, 1.21, 1.4641, 2.1436, 

....... 21.114, ... Thus if x0 > 1, we have F
n
 (x0) → ∞ as n tends to ∞ and hence the orbit tends far from 1. Clearly 

points that are close to 0 have orbits that are attracted to 0, while points close to 1 have orbits that are repelled from 

1. To make the idea more clear , we can give the following definition. 
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Definition : Suppose x0 is a fixed point for F. Then x0 is an attracting fixed point if |F
’
(x0)| < 1. The point x0 is a 

repelling fixed point if |F
’
(x0)| > 1. 

For example consider, F(x) = 2x(1 − x) = 2x - 2x
2
. 

Clearly x0 = 0 and x0 = 1/2 are the fixed points for F. We have F
’
 (x) = 2 - 4x. 

F
’
(0) = 2 and F

’
(1/2) = 0. Thus 0 is a repelling fixed point and 1/2 is an 

attracting fixed points. 

 
 PERIODIC ORBIT OR CYCLE 

 

The point x0 is periodic if F
n
(x0) = x0 for some n > 0. The least such n is called the prime period of the orbit. If x0 is 

periodic with prime period n ,then the orbit of x0 is just a repeating sequence of numbers, 

x0, F(x0), ...., F
n−1

(x0), x0, F(x0), ....F
n−1

(x0),... 

For example 0 lies on a cycle of prime period 2 for F(x) = x
2
- 1, since F(0)= -1 and F(−1) = 0. Thus the orbit of 0 is 

simply 0, -1, 0, -1, 0, -1,...... . We also say that 0 and -1 form a 2- cycle. Similarly 0 lies on  a periodic orbit of prime 

period 3 or a 3-cycle for F(x) = -3x
2
/2 + 5x/2 + 1, since F(0)= 1 , F(1) = -3/2 + 5/2 + 1 = 2 and F(2) = -3 x 

4/2+5x2/2+1=0.So the orbit is 0, 1,  2, 0,1,2,    
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 EVENTUALLY PERIODIC ORBIT 

 

A point x0 is called eventually fixed or eventually periodic if x0 itself is not fixed or periodic, but some point on the 

orbit of x0 is fixed or periodic. For example, -1 is eventually fixed for F(x) = x
2
 since F(−1) = 1, which is fixed. 

Similarly 1 is eventually periodic for F(x) = x
2
- 1 since F(1) = 0, which lies on a cycle of period 2. The point √2 is 

also eventually periodic for this function, since the orbit is √2, 1, 0, -1, 0, -1, 0,..... 
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CHAPTER 2 

CHAOS THEORY 

Chaos theory is a scientific principle describing the unpredictability of systems. Most fully explored and recognised 

during the mid to late 1980’s, its premise is that systems sometimes reside in chaos without any predictability or 

direction. These complex systems may be weather patterns, ecosystems, water flows, anatomical function or 

organisations. While these system’s chaotic behaviour may appear random at first, chaotic systems can be defined 

by mathematical formula, and they are not without order or finite boundaries. 

 
During the early 1960’s a few scientists from various disciplines were taking note of odd behaviour in complex 

systems such as the earth’s atmosphere and the human brain. One of these scientists was Edward Lorenz, a 

meteorologist from the Massachusetts Institute of Technology (MIT), who was experimenting with computational 

models of the atmosphere. In the process of his experimentation he discovered one of chaos theory’s fundamental 

principles - The Butterfly Effect. The Butterfly Effect is named for its assertion that a butterfly flapping its wings 

in Tokyo can impact the weather patterns of Chicago. More scientifically, the Butterfly Effect proves that forces 

governing weather formation are unstable. These unstable forces allow minuscule changes in the atmosphere to 
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have major impact elsewhere. More broadly applied, the Butterfly Effect means that what may appear to be 

insignificant changes to small parts of a system can have exponentially large effects on that system. It also helps to 

dispel the notion that random system activity and disturbances must be due to external influences, and not the  

result of minor fluctuations within the system itself. By the early 1980’s, evidence accumulated that chaos theory 

was a real phenomenon. One of the first frequently - cited examples is a dripping water faucet. At times, water 

drops from a leaky faucet exhibit chaotic behaviour (water doesn't drip at a constant or orderly rate ), eliminating 

the possibility of accurately predicting the timing of those drops. More recently the orbit of Pluto was shown to be 

chaotic. Scientists took advantage of applications using chaos to their benefits; chaos - aware control techniques 

could be used to stabilize lasers and heart rhythms, among multiple other uses. 

 

 DEFINITION OF CHAOS BY ROBERT L DEVANEY 

 

There are many possible definitions of chaos. Before moving on to the definition given by Devaney, we shall 

discuss some important terminologies prerequisite to the definition. 

 
1. Suppose X is a set and Y is a subset of X. We say that Y is dense in X if for any point x ∈ X, there is a point y in 

the subset Y arbitrarily close to x. Equivalently, Y is dense in X if for any x ∈ X we can find a sequence of points 

{yn} ∈ Y that converges to x. For example, the a subset of rational numbers is dense in the set of real numbers. So 

is the subset consisting of all irrational numbers. Also (a,b) is dense in [a,b]. 
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2. A dynamical system is transitive if for any pair of points x and y and any ε > 0 there is a third point z within ε of 

x whose orbit comes within z within ε of y. In other words a transitive dynamical system has the property that 

given any two points, we can find an orbit that comes arbitrarily close to both. Clearly, a dynamical system that has 

a dense orbit is transitive, for the dense orbit comes arbitrarily close to all points. The fact is that the converse is 

also true, i.e, a transitive dynamical system has a dense orbit. However we will not prove this fact since it uses an 

advanced result from real analysis. 

 
3. A dynamical system F depends sensitively on initial conditions if there is a β > 0 such that for any x and any 

ε > 0 there is a y within ε of x and a k such that the distance between F
k
(x) and F

k
(y) is at least β.This says that, no 

matter which x we begin with no matter how small a region we choose about x, we can always find an y in this 

region whose orbit eventually separates from that of x by atleast β. Moreover the distance β is independent of x . 

As a consequence, for each x, there are points arbitrarily nearby whose orbits are eventually far from that of 

x. 
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Definition: 

A dynamical system F is chaotic if 

(a) Periodic points for F are dense 

(b) F is transitive 

(c) F depends sensitively on initial conditions. 

 

 

 
 DEFINITION OF CHAOS BY G. C. LAYEK 

 

The mathematical definition of chaos introduces two notions, viz., the topological transitive property implying the 

mixing and the metrical property measuring the distance. Chaotic orbit may be expressed by fractals. Before 

defining chaos under the mathematical framework we discuss some preliminary concepts and definitions of 

topological and metric spaces which are essential for chaos theory. 

 
(1) Let X be a nonempty set and η ⊆ P(X), the power set of X. Then η is said to form a topology on X if 

(i) the null set ф and the whole set X both belong to η , 
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(ii) union of any collection of subsets of η belongs to η , and 

(iii) intersection of finite collection of subsets of η belongs to η . If η is a topology on X, then the couple (X, η ) is 

called a topological space. The subsets of η are called open sets. Some examples of topological spaces are given 

below: 

(a) Let X be a nonempty set and η = P(X). Then (X, η ) forms a topological space. In this space, the topology η is 

called a discrete topology on X. 

(b) Let X be a nonempty set and η = {ф , X} . Then (X, η ) forms a topological space. In this space, the topology η 

is called a trivial topology or an indiscrete topology on X. 

(2). A metric space (X, d) contains a nonempty set X and a distance function d : X x X → R such that for all x, y, z 

∈ X the following properties hold 

(a) d(x, y) = d(y, x) (symmetry) 

(b) d(x, y) = 0 ⇐⇒ x = y (identity) 

(c) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). 

eg: Let X be a non empty set and d: X x X → R be defined as d(x, y) =0 if x = y and d(x, y) = 1 if x not equal to y 

∀ x, y, z ∈ X. Then (X, d) is a metric space. This metric space is known as discrete metric space. 

(3). A dynamical system can be viewed as a couple (X, f) where f: X→X is a function from the topological space 

(or metric space) X into itself. 

(4). Let f: X→X be a map. A set A ⊆ X is said to be invariant under the map f if for any x ∈ A, f
n
(x) ∈ A ∀ n. 

Specifically the set A is invariant if f(A) = A. Let (X, f) be a discrete dynamical system. A subset A of X is said to 
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be a positively invariant set if f(A) ⊂ A. If f(A) = A, then A is strictly positively invariant. The set of periodic 

points of a map is always an invariant set. 

(5). In a topological space (X, η ), a subset A of X is said to be a dense set (or an everywhere dense set) if Ᾱ= X. In 

otherwords, A is said to be dense subset of X iff for any x ∈ A, any neighborhood of x contains at least one point of 

A. For example, the set of all rational numbers is dense subset of the set of all real numbers. 

(6). A map f : X → X is said to have sensitive dependence on initial conditions (SDIC) property if there exists a 

δ > 0 such that for any x ∈ X and any neighborhood Nϵ(x) = (x -ε, x +ε) of x, there exist y ∈ Nϵ(x) and an integer 

k > 0 such that the property |f
k
(x) − f

k
(y)| > δ holds good. Let us explain the concept by considering an example. 

The doubling map g:S →S on a unit circle S is defined by g(θ) =2θ. Let θ1 ∈ S and Nϵ(θ1)=(θ1- ε,θ1+ε) be an nbd  

of θ1. Let δ > 0 then there exists θ2 ∈ Nϵ(θ1) and k >0 such that |g
k
(θ1) − g

k
(θ2)| = |2

k
θ1 − 2

k
θ2| = 2

k
|θ1 − θ2| > δ, for 

all θ1, θ2 ∈ N(θ1). This implies that the map g has sensitive dependence property. 

(7). Transitivity is one of the fundamental property in the mathematical theory of chaos. A map f : X → X is said to 

be topologically transitive on X if for any two open sets U, V ⊂ X there exists k ∈ N such that f
k
(U)∩V ≠ ф. 

The function f is totally transitive when the composition function is topologically transitive for all integers n ≥ 1. A 

topologically transitive map has fixed points which eventually move under iterations from one arbitrarily small nbd 

to the other. Hence, the orbit cannot be decomposed into two disjoint open sets which are invariant under the map. 

A discrete dynamical system is decomposable if there exists a finite open cover (with at least two elements) of X 

such that each open set of the cover is positively invariant under the map f. On the other hand, the system is 
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indecomposable if and only if it cannot be expressed as the union of two nonempty, closed, and positively invariant 

subsets of X. Thus the topological transitivity implies indecomposobility. 

(8). Topological mixing is a stronger notion of topological transitivity. A map f : X → X is said to be strongly 

transitive if for every x, y ∈ X we can find at least one point z very near to x that moves under iterations to small 

nbd of y. A map f : X → X is said to be topologically mixing on X if for any two open sets, U, V ⊂ X with 

U ∩ V ≠ ф, there exists a positive integer N such that f
n
(U) ∩ V ≠ ф for all n ≥ N. 

 

Definition: A map f : X → X (X is either a topological space or a metric space) is said to be a chaotic map on an 

invariant subset A ⊆ X if the following conditions are satisfied: 

(i) the map f has sensitive dependence on initial conditions on A. 

(ii) f is topologically transitive on A. 

(iii) the periodic points of f are dense in A. 

Even though we have discussed two definitions, we follow the definition given 

by Robert L Devaney. 

 

 SHARKOVSKII’S THEOREM 

 
In 1964, the the Russian (Ukrainian) mathematician, A.N. Sharkovskii in his paper ”Coexistence of Cycles of a 

Continuous Map of a line into itself,” published in Ukrainian Mathematical Journal (1964), proved a remarkable 
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theorem in discrete dynamical system. According to his name the theorem is called Sharkovskiis theorem. The 

theorem plays an important role in verifying the existence of periodic cycles of certain periods of a one- 

dimensional real-valued map from the existence of periodic cycles of different periods of the map. Sharkovskki’s 

theorem is an incredibly powerful and beautiful strengthening of the Period 3 Theorem. Period 3 Theorem states 

that “Suppose F : R → R is continuous and also F has a periodic point of prime period 3. Then F also has periodic 

points of all other periods.” 

The common well-known order in natural numbers is 1, 2, 3, 4, 5, 6,7, 8, 9, ... To state the Sharkovskii’s 

theorem we first list all of the natural numbers in the following strange order : 

3, 5, 7, 9, ... 

2.3, 2.5, 2.7, 2.9, ... 

2
2
.3, 2

2
.5, 2

2
.7, 2

2
.9, … 

2
3
.3, 2

3
.5, 2

3
.7, 2

3
.9, ... 

.................................... 

.................................... 

...2
n
, ........, 2

3
, 2

2
, 2, 1 

This is known as the Sharkovskii’s ordering of natural numbers and it is constructed as follows. First list all 

positive odd integers greater than 1 in increasing order. Then list the integers that are 2 times the odd integers 

greater than 1 in the increasing order and then the numbers which are 22 times of the odd integers and so on. 
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Finally list the integers in decreasing order that are the integral powers of 2. In the Sharkovskii’s ordering, the 

integer 3 is the smallest number and 1 is the largest number. 

 
Sharkovskii’s Theorem: Suppose F : R → R is continuous. Suppose that F has a periodic point of period n and 

that n precedes k in the Sharkovskii’s ordering. Then F also has a periodic point of prime period k.The theorem is 

also true if F : I → I is continuous, where I is a closed interval of the form [a, b]. We simply extend F to the entire 

real line by defining F(x) = F(a) if x < a and F(x) = F(b) if x > b. The resulting extension is clearly a continuous 

function. Also the Period 3 Theorem is an immediate corollary of Sharkovskii’s theorem. 

 

 SHIFT MAP 

 
The Shift map ζ : Σ → Σ is defined by ζ(s0s1s2...) = (s1s2s3...). That is ζ simply drops the first entry of any point in 

Σ. 

For example: ζ(010101...) = (101010...) 

ζ(01111...) = (1111...) 

Periodic points of the Shift map: A point p is said to be a periodic point of period n of a map f if f
n
(p) = p. The least 

positive integer n for which f
n
(p) = p is called the prime period of the periodic point p. The periodic points of a map 

generate a repeating sequence. This sequence can also be observed for the shift map. For example, consider a point 

pn = (s0s1s2...sn−1s0s1...sn−1...) in Σ. Applying the shift operator ζ to pn repeatedly we see that, 
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ζ(pn) = (s1s2...sn−1s0s1...sn−1...) 

ζ
2
(pn) = (s2s3...sn−1s0s1...sn−1...) 

............... 

............... 

…………. 

ζ
n−1

(pn) = (sn−1s0s1...sn−1 ......... ) 

ζ
n
(pn) = (s0s1s2...sn−1s0s1...sn−1 .. ) = pn 

This shows that pn is a periodic point of the shift map ζ of prime period n. 

 

Theorem: The Shift map ζ : Σm → Σm is chaotic. 

Proof: To prove that ζ is chaotic, it is enough to prove ζ is topologically transitive, it has sensitive dependence on 

initial conditions and the set of all periodic points of ζ is dense in Σm. 

We have “ A topological dynamical system f : X → X is topologically transitive if for every pair of non empty 

open sets U, V of X, there exists n ∈ N such that f
n
(U) ∩ V ≠ ф.” So in order to show that ζ is topologically 

transitive we need to prove that for any two non empty open sets U and V of Σm, there exists n ∈ N such that 

ζ
n
(U) ∩ V ≠ ф. 

For, let U and V be any two open sets of Σm. Let x = (x1, x2,x3, ...) ∈ U and y = (y1, y2,y3,    ) ∈ V. Then there exists 

open balls B(x, r1) ⊆ U and B(y, r2) ⊆ V. If r = min{r1, r2}, then B(x, r) ⊆ U and B(y, r) ⊆ V. We choose n ∈ N 
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such that 1/m
n
 < r. Consider the point z =(x1, x2, x3, ...xn, y1, y2, ....) ∈ Σm which agrees with x upto the n

th
. 

Therefore, by proximity theorem, we have d(x, z) ≤ 1/m
n
 < r. 

⇒ z ∈ B(x, r) ⊆ U and consequently it follows that ζ
n
(z) ∈ ζn

(U). Also ζ
n
(z) = (y1, y2, ...) = y ∈ V, so 

y = ζ
n
(z) ∈ ζn

(U) ⇒ y = ζ
n
(z)∈ ζn

(U)∩V. 

Therefore, ζ
n
(U)∩V ≠ ф. 

Therefore, ζ is topologically transitive. 

Now we need to show that ζ has sensitive dependence in initial conditions. For let x ∈ Σm be arbitrary 

and N(x) be an arbitrary nbd of x. Then by definition of nbd, there exists a non empty open set G such that 

x ∈ G ⊆ N(x). Now, x ∈ G, G is open in Σm implies there exists an open ball B(x, r) such that B(x, r) ⊆ G ⊆ N(x). 

Let y ∈ B(x, r) ⊆ G ⊆ N(x) such that x ≠ y and x is very close to y. It is always possible to have a very close point 

to x, because we can choose a k ∈ N as large as we want satisfying 1/m
k
 < r and for this large k ∈ N we can 

construct the point y in such a way that this agrees with x up to k digits. Then d(x, y) ≤ 1/m
k
< r and hence for large 

value of k, x will be too close to y. Let d(x, y) = ε. Then, since x is very close to y and ε is very small, so  

depending on the value of ε > 0, there exists a large and unique n ∈ N such that 1/m
n+1

 <ε ≤ 1/m
n
 . Consider 

d(x, y)= ε ≤ 1/m
n
 

Then d(x, y) ≤ 1/m
n
 ⇒ x and y agrees up to the n

th
 digit 

⇒ (n+1)th digits of x and y are different. 

⇒ The first digit of ζ
n
(x) and ζ

n
(y) are different. 
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⇒ d(ζ
n
(x), ζ

n
(y)) ≥ 1/m. Here, from the above relation it is clear that 1/m plays the role of sensitivity constant 

δ.Thus for every x ∈ Σm and any nbd N(x) of x, there exists y ∈ N(x) and n>0 satisfying d(ζ
n
(x), ζ

n
(y)) ≥ δ for 

δ = 1/m. Thus ζ has sensitive dependence on initial conditions. 

 
 

Now it only remains to prove that the set of all periodic points of ζ is dense in Σm. For that we first show that ζ has 

m
n
- m periodic points of period - n in Σm for n ≥ 2. It is to be noted that if a definite block of n - digits from the set 

{0, 1, 2, ..... m-1} repeats indefinitely, then it is a periodic point of ζ of period - n in Σm. A block of n - digits can  

be formed with the m distinct digits 0, 1, 2, ..., m-1 in m
n−1

 ways. These blocks contain the m - blocks formed by 

the same digit (eg: 000000000.....00,1111111.....11, 22222222     22, etc) which are not periodic points of period-n. 

These are in fact, periodic points of period-1 i.e, fixed points. So, we have only (m
n
- m) numbers of periodic points 

of period - n in Σm. Consider an arbitrary point x ∈ Σm. We show that for any ε > 0, however small,there is a point 

p ∈ P(ζ) such that d(x, p) <ε . Let x = (x1, x2, x3, ...). For the fixed small ε > 0, we can always find a positive 

integer n ∈ N such that 1/m
n
 < ε. Now we construct p ∈ P(ζ) of period (n+1) such that p =(x1, x2, x3,      xn, y, x1, x2, 

x3, ...xny, x1, x2, x2, ...xn, y, ...) i.e, p is constructed by repeating (x1, x2, x3,    xn, y) infinite number of times so that it 

agrees with the digits of x up to n- terms and disagrees at (n + 1)
th

 digit such that xn+1 ≠ y and d(x, p) ≤ 1/m
n
 < ε . 

Thus, for every x ∈ Σm and ε > 0, there exists p ∈ P(ζ) such that d(x, p) < ε . That is, however small ε > 0 may 

be,for any x ∈ Σm there is always a point p ∈ P(ζ) which is at a distance less than the arbitrarily small quantity 

ε > 0. Hence the set P(ζ) is dense. 
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 TENT MAP 

 
The Tent Map is a one dimensional piecewise linear map. Its graph resembles the front view of a tent. It is also 

called a triangle map or a stretch and fold map. Generally, the Tent map T: [0,1] → [0,1] is defined as T(x) = 2λx if 

0≤ x ≤ 1/2 and T(x) = 2λ(1 − x) if 1/2 ≤ x ≤ 1, where λ (0 ≤ λ ≤ 1) is a control parameter. 

 

Theorem: The Tent map is chaotic on [0,1]. 

 
Proof: To prove T is chaotic on [0,1], it is enough to prove that T has sensitive dependence on initial conditions, T 

has dense set of periodic orbits and T has at least one dense orbit i.e, T is topologically transitive. 

Let x ∈ [0,1]. First we will show that if v is any dyadic rational number 
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Figure 3: 

 
 

(of the form j/2
m
, in the lowest terms) in [0,1] and w is any irrational number in [0,1], then there is a positive 

integer n such that |T
(n)

(v)−T
(n)

(w)|> 1/2. Toward that goal, if v = j/2
m
, then T

[m]
(v) = 1 and T

[m+k]
(v) = 0 for all 

k> 0. By contrast, if w is any irrational number in [0,1], then T doubles each number in (0, 1/2), there exists n > m 

such that T
[n]

(w) > 1/2. Since n > m, it follows that T
n
(v) = 0. Next let δ > 0, then there exists a dyadic rational v 

and an irrational number w in [0,1] such that |x − v| < δ and |x−w| < δ. Therefore either |T
(n)

(x)−T
(n)

(v)| > 1/4 or 

|T
(n)

(x)−T
(n)

(W)| > 1/4. Thus if we let ԑ, then sensitive dependence on initial conditions at the arbitrary number x, 

and hence on [0,1] is proved. 
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Let (a,b) be any open interval in (0,1). Let p be an odd positive integer large enough so that 1/2.p < b-a. There is a 

least positive integer k such that k/p ∈ (a, a+b/2). If k is even, then we are done. If k is odd then k+1/p ∈ (a,b) will 

do. Thus the set of periodic points under T is dense in [0,1]. Thus T is chaotic. 
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Chapter 3 

FRACTALS AND THEIR PROPERTIES 

 

With the advent of civilization, the human mind always tends to unravel the wealth of knowledge in nature, whether 

it is his curiosity to know the universe or to measure the length of the coastlines of the earth. However,despite 

discovering modern technological tools, most of the knowledge remains unknown. Nature possesses objects that are 

irregular and erratic in shape. With the aid of Euclidean geometry it became possible to give detail descriptions of 

length, area, volume of objects like line, square, cube, etc.,but for many natural objects like cauliflower, leaves 

patterns of trees, shape of mountains, clouds, etc., the idea of length, area remains vague until Benoit Mandelbrot 

(1924 - 2010). In the year 1975, he introduced a new branch of geometry known as fractal geometry which finds 

order in chaotic shapes and processes, and also wrote a book on The fractal geometry of nature in 1977.More 

specifically, fractal geometry describes the fractals, which are complex geometric structures prevalent in natural and 

physical sciences. 

In the earliest civilizations these complex structures now known as fractals were regarded as formless, 

consequently the study of fractals was rejected until Mandelbrot who claimed that these formless objects can be 

described by fractal geometry. Most fractal objects are self-similar in nature. By self-similarity we mean that if a 

tiny portion of a geometric structure is magnified, an analogous structure of the whole is obtained. The self- 
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similarity does not always mean the usual geometric self-similarity in which self-similarity of the shape is 

considered, but it may also be statistical in which the degree of irregularity or fragmentation of the shape is same at 

all scales. However the converse is not true, that is not every self-similar object is a fractal. The geometry of fractal 

is different from Euclidean geometry. Among the differences first comes the dimension of the objects, the objects 

of Euclidean geometry always have an integer dimension like line has dimension 1, square has dimension 2 and a 

cube has dimension 3. Wherein fractal objects usually have fractional dimension for instance 1.256, even though 

there are exceptions such as the Brownian motion, Peano curve, which have fractal dimension 2 and devils 

staircase has fractal dimension 1. 

 
The perimeter and surface area of a fractal object is not unique like the regular objects and changes its values with 

finer resolution. Thus the perimeter and area of fractals are undefined; this means that the object cannot be well 

approximated with regular geometry like square and cubes of Euclidean geometry. Natural objects like ferns, trees, 

snowflakes, seashells, lightning bolts, cauliflower, or broccoli are fractals. The natural processes which grow with 

the revolution of time such as sea coast, surface of moon, clouds, mountains, veins, and lungs of humans and 

animals are all approximately described by fractal geometry. As we know chaotic orbits are highly irregular. 

Fractals are useful to study chaotic orbits and may be represented by fractals. Fractals are not just a matter of 

geometry but have a number of applications for the well-being of life. Fractal properties are useful in medical 

science. 
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 FRACTALS 

 

The name fractal was invented by Polish-French-American mathematician Benoit Mandelbrot in the year 1975, 

from the Latin adjective fractus, which means broken or fractured. Mandelbrot created a beautiful fractal 

represented by a set of complex numbers named after him as Mandelbrot set. Since then he has been regarded as 

the originator of fractal geometry and fractals. However, at that time there already existed some mathematically 

developed fractals such as Cantor set by George Cantor in 1872, Peanos curve by Giuseppe Peano in 1890, Koch's 

curve by Helge von Koch in 1904, Sierpinskys fractals such as carpet, triangle, etc., by Waclaw Sierpinski in 1916, 

Julia set by Gaston Julia in 1918 but Mandelbrot was the man who gave all of these structures a common name and 

a tool to describe the properties and complexities underlying these irregular and erratic structures. 

However, there is a huge difference between the natural fractals and mathematically developed fractals because 

natural fractals are always growing with time, they are generally dynamical processes while those developed 

mathematically are regarded as static (do not change with time). Fractal is an object that appears self-similar with 

varying degrees of magnification. It does not have any characteristic length scale to measure and details of its 

structure would reveal if looked at finer resolution. Furthermore, it possesses symmetry across the scale with each 

small part of the object reproducing the structure of the whole.The fundamental difference between fractal and non-

fractal objects is that when a non-fractal object is magnified, it cannot reveal the original feature. For instance, if a 

section of an ellipse is magnified, it loses its feature of being an ellipse (shown in Fig. 13.1); but a fractal object 

always reveals its original feature under magnifications. 
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Figure 4: A non fractal object (ellipse). 

 
 

The main properties of fractal objects are: 

(i) Fractals appear with some degrees of self-similarity that is, if a tiny portion of a fractal object is enlarged, 

features reminiscent of the whole will be discerned. This means that the fractal objects could be broken into even 

finer pieces having same features as the original; 

(ii) The dimension of a fractal object is usually not an integer but fractional; 

(iii) Usually, the perimeter and area of a fractal object is undefined with changing values depending upon the 

resolution taken to measure it. In some cases, the perimeter is immeasurable (being infinite), but area is finite; 

(iv) Fractal geometry can be represented by an iterative algorithm for instance the Mandelbrot set is the set of 

points (say z0) in the complex plane for which the iteration is given by zn+1 = z
2

n+ z0 which remains bounded. 

Another example is the Julia set represented by the function f(z) = z
2
 + c. 
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 SELF SIMILARITY AND SCALING 

 

Self-similarity and scaling are two bases for describing fractal geometry. Basically, the concept of self-similarity is 

an extension of the concept of similarity in mathematics or physical processes. Two objects are said to be similar if 

they are of the same shape, regardless of their size. Normally, the similarity between two objects or among objects 

is studied under the light of transformations. Two objects are said to be similar if one is obtained from the other by 

a transformation, known as similarity transformation. Similarity transformations are the combinations of 

translation, rotation, and scaling. 
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Figure 5: Some fractal objects: (a) forked lighting in the sky, (b) cloud boundaries, (c) broccoli, (d) smoke coming 

out of chimney. 

We shall now discuss these transformations in detail in R
2
 

Let P(x, y) be any point in R
2
 . A translation operator denoted  by T,  translates  the point  P into  a new  point 

P´(´x, ´y) by the rule (´x, ´y) = T(x,y) =(x+c, y+d), that is ´x = x+c and ´y = y+d where c and d are real numbers. 

Here c represents the displacement of the point P in the horizontal direction(x-axis) and d represents the 

displacement of the point P in the vertical direction (y-axis). For example consider the rectangle ABCD as shown 

in the figure. 

Taking c = -1 and d = 1, we can find the translated rectangle A´B´C´D´ as shown below : 



41 

 

 

Thus under translation T the shape and size of an object remain invariant.  

A scaling operation S takes the point P(x, y) to a new point P´(´x, ´y) by the formula (´x, ´y) = T(x, y) = (αx, αy) 

i.e, ´x = αx and ´y = αy, where α> 0 is a real number, known as the scaling factor. Under the scaling operation S, an 

object will either contract or expand. For α < 1, it contracts and 

 

Figure 6: Rectangle ABCD in the XY plane 
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Figure 7: Translation of the rectangle ABCD-1 unit along the x -axis and 1 unit along the y -axis 

 
 

for α > 1, it expands. Consider the rectangle in the previous example, for the scaling factor α = 2 and α = 1/2, the 

rectangle ABCD reduces to the rectangle A´B´C´D´ and ´A´B´C´D´ respectively. 

 

 

Figure 8: 
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Figure 9: 

 
 

This illustrates that the transformed figures are associated with some transformations. We will now try to 

understand the concept of self similarity by the following example of the self similarity of a square. Consider the 

following self similar square. This square can be divided into 4 equal squares as shown below. Taking any one of 

these four squares and magnifying (scale) it by the scaling factor α = 2, we will obtain the original square. This is 

actually the property of self similar objects. Self-similarity usually does not mean that a magnified view is identical 

to the whole object, but instead the character of patterns is same on all scales. Normally, self-similarity of fractal 

objects, natural, physical, and biological processes may occur in different types, viz., self-similarity in space, self- 

similarity in time, and also statistical self-similarity. We shall illustrate these different types of self-similarities as 

follows: 
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Figure 10: Self similarity of a square 

 

 

 
1. Self similarity in space: If the pattern of an object or dynamical process in large structures obtains under the 

repetition of smaller structure then the similarity exhibited by the object is called as self-similarity in space. The 

measurement of area of an object depends on the length of the space used to measure it. The length of the space 

gives the spatial resolution of the measurement. For finer resolution, area of the object gets increased. For 

examples, the self-similar patterns in biological systems such as the arteries and the veins in the retina and the 

tubes that bring air into the lungs maintain the self-similarity in space. The self similarity in space had been better 

described by Mandelbrot in his 1967 paper entitled How long is the coastline of Britain, based on measuring the 

length of coastlines first considered by British meteorologist Lewis Fry Richardson, who tried to measure the 

length of the coastline of Britain by laying small straight line segments of the same length, end to end, along the 

coastline. The spatial resolution of the measurement is set by the length of these line segments and the combined 

length of these line segments give the total length of the coastline. He observed that the length of coastline 
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increased each time when the length of the line segment measuring the coastline decreased, i.e., whenever the 

measurement was taken at ever finer resolutions since the smaller line segments included the smaller bays and 

peninsulas that were not included in the measurement of larger line segments. The total length of coastlines thus 

varies with the length of line segment measuring it.Coastlines are approximately described by fractal geometry. 

Thus the length of fractals is immeasurable. 

 
2. Self similarity in time: If the pattern of the smaller fluctuations of a process over short times is repeated in the 

larger fluctuations over longer times then the self-similarity in the process is found in terms of time and is known 

as self-similarity in time. The electrical signals generated by the contraction of the heart, the volumes of breaths 

over time drawn into the lung, etc. are some examples of self-similarity in time. 

3. Statistical self similarity: When the statistical properties such as mean, variance, correlations, etc., of the smaller 

pieces are exactly similar to the statistical properties of the larger pieces, then the self-similarity is called as 

statistical self-similarity. We can say that just like geometrical structure satisfies a scaling relation so does the 

stochastic process. For instance, consider the cloud boundaries. They are rugged (uneven or irregular) in nature. If 

a small portion of the cloud boundary is enlarged it looks approximately the same (same degree of rugedness). 

It is not exactly self-similar. Actually, the smaller copies of the cloud boundaries are approximately the same kind 

of their larger portions, but some of the statistical properties remain invariant. This type of self-similarity is known 

as statistical self-similarity. The blood vessels in the retina, the tubes that bring air into the lungs, the electrical 
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voltage across the cell membrane, wall cracks, sea coast lines, and ECG report of heartbeat of a normal man 

possess the statistical self-similar property. 

 
 SELF SIMILAR FRACTALS 

 

Fractal objects are omnipresent in nature and can be well-approximated mathematically. Mandelbrot set, Koch 

snowflake, and Sierpinski triangle are all examples of mathematically generated fractals. All fractal objects in 

nature are self-similar at least approximately or statistically if not exactly. Natural objects are usually 

approximately fractal, and we are well aware of the fact that one cannot find any natural object or phenomena 

which are exactly self-similar. In contrast the mathematical fractals are perfect fractals where each smaller copy is 

an exact copy of the original. 

The Sierpinski triangle S may be considered as the composition of three small equal triangles, each of which is 

exactly half the size of the original triangle S. Thus if we magnify any of these three triangles by a factor of 2, we 

will get the triangle S. So, the triangle S consists of three small triangles, which are self-similar copies of S. Again, 

each of these three small self-similar triangles can be considered as the combination of another three small self- 

similar triangles, each of which is the scaled-down copy with scaling factor α = 1/2 and so on. Thus we see that if 

we enlarge a small portion of the Sierpinski triangle by a suitable scaling factor. it will give the original feature. 

This type of self-similarity is known as exact self-similarity. It is the strongest self-similarity occurred in fractal 

images. Likewise Sierpinski gasket, Cantor set, von Koch curve, fern tip, Menger sponge, etc., possess exact self- 
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similarity property. It is to be noted that most of the fractal objects are self-similar, but a self-similar object is not 

necessarily a fractal. For example, a solid square can be divided into four small solid squares that resemble the 

original large square, and each small square can be divided into four smaller solid squares resembling the large 

square, and so on. Hence a square is self-similar. But it is not a fractal, and is a regular geometric shape whose 

properties can be well described by the Euclidean geometry. 

 

 

 

 

 

 
 

Figure 11: Sierpinski triangle 
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Figure 12: Magnification of a portion of the Sirepinski triangle first by scaling 

factor 4 and then by factor 8. 

 
 CONSTRUCTION OF VON KOCH CURVE 

 

The Swedish mathematician Helge von Koch (1870 - 1924) introduced the Koch curve in the year 1904, as an 

example of a curve that is continuous but nowhere differentiable. We know that tangent at a corner of a curve is not 

uniquely defined. The Koch curve is made out of corners everywhere, therefore it is not possible to draw tangent at 

any of its points hence nowhere differentiable. This curve can be constructed geometrically by successive iterations 

as follows. 

We start with a line segment, say, S0 of length L0. To generate S1, divide it into three equal line segments. Then 

replace the middle segment by an equilateral triangle without a base. This completes the first step (S1) of the 

construction, giving a curve of four line segments, each of length l = L0/3 and the total length is 4L0/3 in this stage 

of construction. To generate S2, remove the middle line segment of each of the above 4 line segments and replace 

by equilateral triangle without base. This completes the second step (S2) of the construction, giving 
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Figure 13: Construction of von Koch curve 

 
 

a curve of 16 line segments, each of length l = L0/ 32 and the total length is 16L0/32 in this stage of construction. 

We repeat the process again and again and hence at the nth stage number of copies is equal to N = 4
n
 line 

segments, each of length L0/3
n
 . The limiting set K=S∞ is known as the von koch curve. The length increases by a 

factor of 4/3 at each stage of the construction. So at the nth stage the length of the segments are given by Sn = 

4
n
L0/3

n
 = L0 (4/3)

n
 . So Sn → ∞ as n →∞. Hence the length of the von koch curve is infinite. 
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 CONSTRUCTION OF SIERPINSKI TRIANGLE 

 
 

It was discovered by the Polish mathematician Waclaw Sierpinski (1882 - 1969) in 1916. Consider a 

solid (filled) equilateral triangle, say S0 ,with each side of unit length. Now divide this triangle into four equal 

small equilateral triangles using the mid- points of the three vertices of the original triangle S0 as new vertices. 

Then remove the interior of the middle triangle. This generates the stage S1 . Repeat this process in each of the 

remaining three equal solid equilateral triangles to produce the stage S2 . Repeat this process continuously for 

further evolution and finally the Sierpinski triangle is formed. 

 

 
Figure 14: Construction of Sierpinski triangle 
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S1 is covered by N = 3 small equal equilateral triangles each of side ε = 1/2. Similarly S2 is covered by N = 3
2
 

triangles of side = 1/2
2
 . In general, Sn at the nth stage is covered by N = 3

n
 triangles of side ε = 1/2

n
 . The area at 

the nth stage is obtained as 3
n
√3/4( 1/2)

2n
 =√3/4( 3/4)

n
 → 0 as n→ ∞. 

 
 JULIA SETS 

 

It was discovered by Gaston Julia (1893-1975) in the year 1918. Julia set represents the transformation function 

which is either a complex polynomial or complex rational function from one state of the system to the next, and is 

a source of the majority of attractive fractals known at present. Julia set is obtained by iterating the quadratic 

function f(z) =z 
2
 + c for a complex initial value say z0 , where c is an arbitrary fixed complex constant. Thus, by 

fixing the value of c and taking an initial value z0 of z, one will obtain f(z) = z
2

0 + c after the first iteration. The 

next iteration will give f(z) =(z
2
0 +c)

2
 +c. Thus for a fixed value of c, the successive iterations give a sequence of 

complex numbers, i.e., z
2

0 +c, (z
2

0 + c)
2
 + c,((z

2
0 + c)

2
 + c)

2
 + c and so on. This sequence is either bounded or 

unbounded. Actually, Julia set is the boundary set between two mathematically different sets, escape set say E and 

the prisoner set say P. The escape set is the set of all those initial points z0 for which the iterations give an 

unbounded sequence of complex number which escapes any bounded region and the prisoner set P is the collection 

of remaining initial points for which the iteration remains in a bounded region for always. Thus the complex plane 

of initial values is subdivided into two subsets E and P, and the Julia set is the boundary between them. However, 

one should be careful in regarding any boundary set like this as fractals. For instance, if D denotes a disk with 
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center at 0 and radius 1 and that E is the region outside the disk. Then the boundary between E and D is the unit 

circle. The definition of Julia set suggests that the unit circle is a Julia set, but being a regular geometric shape it is 

not a fractal. Now carrying out iterations of f(z) fixing different values of c would yield different structures of Julia 

set. Therefore, there is a possibility of existence of an infinite number of such beautiful fractals. Mathematically, 

the escape set and the prisoner set can be defined as follows The escape set for the parameter c is given by 

Ec = { z0 : |zn| → ∞ as n→ ∞ }. The prisoner set for parameter c is given by Pc = { z0 : z0 does not belong to Ec }. 

Both escape set E and the prisoner set P fill some part of the complex plane and complement each other. Thus, the 

boundary of the prisoner set is simultaneously the boundary of the escape set, which is the Julia set for c. 

 

3.6 MANDELBROT SET 

 

Mandelbrot set is attributed to Benoit Mandelbrot, who discovered this set in 1979. It is the region in the 

complex plane comprising the values of c for which the trajectories defined by Zk+1 = Z
2

k + c ; k = 0,1,2,. remains 

bounded for k → ∞. We know that the Julia set and the prisoner set are either connected or totally disconnected. 

Mandelbrot set consists of those values of c for which the Julia set (Jc) is connected, i.e., M = {c ∈ C : Jc is 

connected}. Mandelbrot set represents an extremely intricate structure. It is made up of a big cardiode to which a 

series of circular buds are attached. Each of these buds is surrounded by further buds and so on. From each bud 

there grows a fine branched hair in the outer direction. If these hairs are viewed at enlarged magnification one will 

find Mandelbrot sets that are self-similar with the actual Mandelbrot set. Mandelbrot set contains 
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Figure 15: Mandelbrot set 

an enormous amount of information about the structure of Julia set as when the boundaries of Mandelbrot set are 

magnified an infinite structures of Julia sets are revealed for some values of c. 



54 

 

 

CHAPTER 4 

 
 

APPLICATION 

 
 

Fractals are not just complex shapes and pretty pictures generated by computers. Any thing that appears random 

and irregular can be a fractal. Fractals permeate our lives, appearing in places as tiny as the membrane of a cell and 

as majestic as the solar system. Fractals are the unique, irregular patterns left behind by the unpredictable 

movements of the chaotic world at work. In theory one can argue that every thing existing in this world is a fractal; 

for example the branching of the tracheal tubes, the leaves of trees, veins in a hand, water swirling an twisting out 

of a tap, a puffy cumulous cloud, tiny oxygen molecule or the DNA molecule, all of these are fractals. 

Fractals have always been associated with the term chaos. One author elegently describes fractals as the patterns of 

chaos. Fractals depict chaotic behaviour, yet if one looks closely enough, it is always possible to get glimpses of 

self-similarity within a fractal. To many chaologists, the study of chaos and fractals is more than just a new field in 

science that unifies mathematics, theoretical physics, art and computer science- it is a new revolution. It is the 

discovery of a new geometry, one that describes the boundless universe we live in; one that is in constant motion, 

not as static images in textbooks. Today many scientists are trying to find applications for fractal geometry from 

predicting stock market prices to make new discoveries in theoretical physics. Fractals have more and more 

applications in science. The main reason is that they very often describe the real world better than traditional 

mathematics and physics. 
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 CHAOS IN CARDIOLOGY 

 

The human heart also has a chaotic pattern. The time between beats does not remain constant. It depends 

on how much activity a person is doing, among other things. Under certain conditions, the heart beat can speed up. 

Under different conditions, the heart beats erratically. It might even be called a chaotic heart beat. The analysis of a 

heart beat can help medical researchers find way to put an abnormal heartbeat back into a steady state, instead of 

uncontrolled chaos. However more sensitive instruments reveal that normal heart rhythm shows small vari-ability 

in the interval between beats. Our hearts rarely beat the same way twice. Varying opinions on the role of 

randomness and chaos have been proposed, among which one standing ground is that heart function is non chaotic 

when healthy and turns erratic, with creation of spatial chaos. Also reports say that even in normal state, heart 

physiology and function is actually chaotic and when these attributes become less random or chaotic, cardia 

disfunction manifests and death occurs. 

 
 CHAOS IN SURGERY 

 

 
 

In surgery, N - plastery, W - plastery and M - plastery techniques have been in vogue for long. Irregular 

lengthening of an incision or scar has been seen to produce better results, both surgically and aesthetically. Why 
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does a lacreation heal better when its edges jagged or serrate and not alligned straight and side by side has been a 

question never raised or answered by the pathologists or surgeons. Unknowingly plastic surgery has been applying 

the techniques described as chaos systems. The reason why N, W or M procedures produce less scar tissue could  

be due to the operation of chaos theory. The major irregular the input, 

the healthier the output. 

 

 

 CHAOS IN PHYSIOLOGY 

 

According to some, even cyclical and periodic physiological processes such as menstruation including the 

transition to menopause, results from a specififc kind of complex system namely, one that is non linear, dynamical 

and chaotic. The dynamics of fluid flow and turbulence are areas that have engaged medical researchers applying 

chaotic systems to study cardiovascular physiology and the biophysics of blood flow. In fact, this area has much 

potential for research in the world of medicine. 

 

 FRACTAL IN ASTRONOMY 

 
 
Fractals may revolutionize the way that the universe is seen. Cosmologists usually assume that matter is spread 

uniformly across space. But observations shows that this is not true. Astronomers agree with that assumption on 
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small scales, but most of them think that the universe is smooth at very large scales. However, a dissident group of 

scientists claim that the structure of the universe is fractal at all scales. If this new theory is proved to be correct, 

even the big bang models should be adapted. Some years ago we proposed a new approach for the analysis of the 

galaxy and cluster correlations based on the concepts and methods of modern statistical physics. This led to the 

surprising result that the galaxy correlations are fractal and not homogeneous up to the limits of the available 

catalogues. The result is that the galaxy structures are highly irregular and self similar. 

 
 FRACTAL IN NATURE 

 
 
Suppose take a tree. Pick a particular branch and study it closely. Choose a bundle of leaves on that branch. To 

chaologists, all three of the objects described - the tree, the branch and the leaves are identical. To many, the word 

chaos suggests randomness, unpredictability and perhaps even messiness. Chaos is actually very organised and 

follows certain patterns. The problem arises in finding these elusive and intricate patterns. One purpose of studying 

chaos through fractals is to predict patterns in dynamical systems that on the surface seems unpredictable. A 

system is a set of things, an area of study; a set of equations is a system, as well as more tangible things such as 

cloud formations, the changing weather, the movement of water currents, or animal migration patterns. Weather 

forecasts are never totally accurate and long term forecasts, even for a week can be totally wrong. This is due to 

minor disturbances in airflow, solar heating etc. Each disturbance may be minor, but the change it creates will 

increase geometrically with time. Soon, the weather will be far different than what was expected. With fractal 
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geometry, we can visually model much of what we witness in nature, the most recognised being coastlines and 

mountains. Fractals are used to model soil erosion and to analyse seismic patterns as well. Seeing that so many 

facets of mother nature exhibit fractal properties, may be the whole world around us is a fractal after all. 

 
 FRACTAL IN COMPUTER SCIENCE 

 
 
The most important use of fractals in computer science is the fractal image compression. This kind of compression 

uses the fact that the real world is well described by fractal geometry. By this way, the images are compressed 

much more than by usual ways (JPEG or GIF file formats). Another advantage of fractal compression is that when 

the picture is enlarged, there is no pixelisation. The picture seems very often better when its size is increased. 

 
 FRACTAL IN FLUID MECHANICS 

 
 
The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic and very difficult to model 

correctly. A fractal representation of them helps engineers and physicists to better understand complex flows. 

Flames can also be simulated. Porous media have a very complex geometry and are well represented by fractal. 

This is actually used in petroleum science. 
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 FRACTAL IN TELECOMMUNICATION 

A new application is fractal shaped antennae that reduce greatly the size and the weight of the antennas. Fractenna 

is the company which sells these antennas. The benefits depend on the fractal applied, frequency of interest and so 

on. In general the fractal parts produces fractal loading and makes the antenna smaller for a given frequency of use. 

Practical shrinkage of 2 - 4 times are realizable for acceptable performance. Surprisingly high performance is 

attained. 
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CONCLUSION 

 

While the classical definition of chaos means unpredictability and absence of order, the scientific definition of 

chaos is based on nonlinear mathematics. Although its principles were already established during the late 19th 

century by Poincare, they were not mathematically accessible until the work of Lorenz (1963). Today, chaos is 

defined as ’stochastic behaviour in a deterministic system’, or more colloquially; chaos is apparently lawless 

behaviour totally ruled by (deterministic) laws. 

A new scientific revolution is taking shape from the combination of some new concepts with the enoromous power 

of computation achieved during the last few years. The resulting new vision of nature has been called ” 

deterministic chaos”, ”science of complexities” and ” non linear dynamics”. Complex systems can now be studied 

over time and monitored continually in terms of non linear differential equations. 

Through this project, we could gather a lot of information about chaos theory and fractals, especially their relevant 

applications in human life and nature. We actually covered all the basic ideas related to the topic and some 

extended application in Medical science. Thus we have arrived at a conclusion that chaos theory as such has great 

applications in various fields of study and research. Thus it paves a new way for the young researchers and 

scientists to make wonders in the upcoming years. 
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