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CHAPTER 1

1.1 AN INTRODUCTION

In mathematics, a hypergraph is a generalization of a graph in
which a pair H= (X, E) where X is a set of elements called nodes or vertices, and
E is a set of non-empty subsets of X called hyperedges or edges. Therefore, E is
a subset of P(X)\{d},where is the power set of X. The size of vertex set is called
the order of the hypergraph, and the size of edges set is the size of the

hypergraph.

While graph edges are 2-element subsets of nodes, hyperedges are arbitrary sets
of nodes, and can therefore contain an arbitrary number of nodes. However, it
is often desirable to study hypergraphs where all hyperedges have the same
cardinality. A k-uniform hypergraph is a hypergraph such that all its hyperedges
have size k. (In other words, one such hypergraph is a collection of sets, each
such set a hyperedge connecting k nodes.) So a 2-uniform hypergraph is a graph,
a 3-uniform hypergraph is a collection of unordered triples, and so on. A
hypergraph is also called a set system or a family of sets drawn from the
universal set.Hypergraphs have many other names. In computational geometry,
a hypergraph may sometimes be called a range space and then the hyperedges
are called ranges. In cooperative game theory, hypergraphs are called simple
games (voting games); this notion is applied to solve problems in social choice

theory. In some literature edges are referred to as hyperlinks or connectors.

1.2 BASIC CONCEPTS

A hypergraph H denoted by H = (V;E = (ei ); i€l ) on a finite set Vis a

family (ei )iel, (I is a finite set of indexes) of subsets of V called hyperedges.
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Sometimes V is denoted by V(H) and E by E(H).
The order of the hypergraph H = (V;E) is the cardinality of V, i.e.

|V| = n; its size is the cardinality of E, i.e. |E| = m. H=(X,E)

By

o,

An example of a hypergraph, with

X={V1,V2,V3,V4,V5,V5,V7} and E

E={elle2le3 ,€4 }={{V1 IVZ IV3 }I{VZ rV3 } I{V3 IV5 IV6 }I{V4 }}
This hypergraph has order 7 and size 4. Here, edges do not just connect two vertices buf

several, and are represented by colors.

1.3 EXAMPLES OF HYPERGRAPH

Let M be a computer science meeting with k 2 1 sessions : S1, S, S3, . .
., Sk. Let V be the set of people at this meeting. Assume that each session is

attended by one person at least. We can build a hypergraph in the following way:
* The set of vertices is the set of people who attend the meeting;
* the family of hyperedges (ei) ;i€{1,2,...k} is built in the following way:

—e,i €{1,2,...k}is the subset of people who attend the meeting Si.
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1.3.1 FANO PLANE

/q\ The Fano plane is the finite

/ \\\ projective plane of order 2, which have the

/ T™N 2 smallest possible number of points and

: * \\:;(\/\/ N\ lines, 7 points with 3 points on every line

/ /\,</ >j\ \ and 3 lines through every point. To a Fano
d/ g \\“\% 3 plane we can associate a hypergraph called

Fano hypergraph.
e The set of verticesisV={0, 1, 2, 3,4, 5, 6};
* The set of hyperedges is E = {013, 045, 026, 124, 346, 235, 156}

The rank is equal to the co-rank which is equal to 3, hence, Fano hypergraph is
3-unifirm. Figure show Fano hypergraph Steiner systems. Let t, k, n be integers

which satisfied: 2 <t<k<n.
A Steiner system denoted by S(t; k; n) is a k-uniform hypergraph

H = (V;E) with n vertices such that for each subset T C V with t elements there
is exactly one hyperedge e € E satisfying T C e. For instance the complete
graph Kn is a S(2; 2; n) Steiner system. An important example is the Steiner
systems S(2; 3; n) which are called Steiner triple systems. The Fano plane is an

example of a Steiner triple system on 7 vertices.

1.3.2 LINEAR SPACES

A linear space is a hypergraphs in which each pair of distinct vertices is
contained in precisely one edge. To exclude trivial cases, it is always assumed

that there are no empty or singleton edge S.
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A hypergraph with only one edge which contains all vertices, this is called a trivial

linear space.

A simple hypergraph is a hypergraph H = (V; E) such that
eiCe ==i=j.

A simple hypergraph has no repeated hyperedge.

A hypergraph is linear if it is simple and |ein ej | €1 for

alli,j € lwherei=j.

1.4 GRAPH: PRELIMINARY DEFINITIONS

A graph is an ordered triple G=( V(G),E(G),lc ) where
V(G) is a nonempty set, E(G) is a set disjoint from V(G) and I is an incidence
relation that associates with each element of E(G) an unordered pair of elements
(same or distinct) of V(G).Elements of V(G) are called the vertices of G and
elements of E(G) are called the edges of G.V(G) and E(G) are the vertex set and

edge set of G respectively. If, for the edge e of Gl (e)={u,v},we write Is (e)=uv.

If Ic (e)={u,v}, then the vertices u and v are called the end vertices or
ends of the edge e.Each edge is said to join its ends; in this case, we say that e is
incident with each one of its ends. Also, the vertices u and v are then incident
with e: A set of two or more edges of a graph G is called a set of multiple or
parallel edges if they have the same pair of distinct ends. If e is an edge with end
vertices u and v; we write e= uv: An edge for which the two ends are the same
is called a loop at the common vertex. A vertex u is a neighbor of vin G, if uv is
an edge of G, and u # v.The set of all neighbours of v is the open neighborhood

of v or the neighbor set of v; and is denoted by N(v); the set N[v]=N(v) U {v} is
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the closed neighborhood of v in G: When G needs to be made explicit, these
open and closed neighborhoods are denoted by Ng(v); and Ng[v] respectively.
Vertices u and v are adjacent to each other in G if and only if there is an edge of
G with u and v as its ends. Two distinct edges e and f are said to be adjacent if
and only if they have a common end vertex. A graph is simple if it has no loops
and no multiple edges. Thus, for a simple graph G, the incidence function Ig is
one-to-one. Hence, an edge of a simple graph is identified with the pair of its
ends. A simple graph therefore may be considered as an ordered pair
(V(G),E(G)), where V(G) is a nonempty set and E(G) is a set of unordered pairs of
elements of V(G) (each edge of the graph being identified with the pair of its

ends).

A graphis trivial if its vertex set is a singleton and it contain no edges.
A graph is bipartite if its vertex set can be partitioned into two nonempty
subsets X and Y such that each edge of G has one end in X and the other in
Y.The pair (X,Y) is called a bipartition of the bipartite graph. The bipartite
graph G with bipartition (X,Y) is denoted by G(X,Y). A simple bipartite graph
G(X,Y) is complete if each vertex of X is adjacent to all the vertices of Y: If
G(X,Y) is complete with |X|=p and |Y|=q then G(X,Y) is denoted by Kq. A
complete bipartite graph of the form K; 4 is called a star.
A graph H is called a subgraph of G if V(H) € V(G) ,E(H)< E(G) and Ix
is the restriction of Ig to E(H). If H is a subgraph of G,then G is said to be a
supergraph of H: A subgraph H of a graph G is a proper subgraph of G if either
V(H)#V(G) OR E(H)#E(G).(Hence, when G is given, for any subgraph H of G, the
incidence function is already determined so that H can be specified by its vertex
and edge sets.) A subgraph H of G is said to be an induced subgraph of G if each
edge of G having its ends in V(H) is also an edge of H. A subgraph H of G is a
spanning subgraph of G if V(H)=V(G).
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The induced subgraph of G with vertex set S € V(G)is called the subgraph of G
induced by S and is denoted by G[S]. Let E’ be a subset of E and let S denote the
subset of V consisting of all the end vertices in G of edges in E’. Then the graph
(S,E’,lc\r)is the subgraph of G induced by the edge set E’ of G. It is denoted by
G[E’]. Letu and v be vertices of a graph G . By G+uv, we mean the graph obtained

by adding a new edge uv to G.
A clique of G is a complete subgraph of G. A clique of G is a
maximal clique of G if it is not properly contained in another clique of G.

An automorphism of a graph G is an isomorphism of G onto

itself.We recall that two simple graphs G and H are isomorphicif and only if there
exists a bijection ¢:V(G) to V(H) such that uv is an edge of G if and only if ¢(u)

d(v) is an edge of H. In this case ¢ is called an isomorphism of G onto H.

1.5 HYPERGRAPH :PRELIMINARY DEFINITIONS

An example of a hypergraph is shown in

above. The basic idea of the hypergraph

concept is to consider such a

generalization of a graph in which any

subset of a given set may be an edge

PY rather than two-element subsets. In

drawing hypergraphs, vertices are

points in the plane, edges of size 2 are curves connecting respective vertices (as
in graph drawing), and edges of size different from 2 are closed curves

separating a respective subset from the rest of \vertices.
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Let X = {x1,X2, . . . ,Xn} be a finite set, and let D = {D1,D3, . . . ,Dm} be a family of
subsets of X. The pair H = (X,D) is called a hypergraph with vertex set X also
denoted by V(H ), and with edge set D also denoted by D(H ). Sometimes, the
hypergraph H = (X,D) is called a set-system.|X| = n is called the order of the
hypergraph, written also as n, or n(H). The elements x1,x2, . . . ,xn are called the
vertices and the sets D1,Dz, . . . ,Dm are called the edges (hyperedges). The
number of edges is usually denoted by m or m(H). Sometimes we will omit the
indices when denoting the vertices and edges if this evidently does not lead to
misunderstanding. To include the most general case (it may happen in some
algorithms), we assume that the set of vertices X and/or the family D may be
empty. A hypergraph which contains no vertices and no edges is called the
empty set. Some edges may also be empty sets. Some edges may be the subsets
of some other edges; in this case they are called included. In some cases some
edges may coincide; they are then called multiple. A hypergraph is called simple
if it contains no included edges. Hence simple hypergraphs do not have empty

and multiple edges. Simple hypergraphs are also known as Sperner families.

In a hypergraph, two vertices are said to be adjacent if there is an
edge D € D that contains both vertices. The adjacent vertices are sometimes
called neighbor to each other, and all the neighbors for a given vertex x are called
the neighborhood of x in a graph or hypergraph. The neighborhood of x is
denoted by N(x). Two edges are said to be adjacent if their intersection is not
empty. If a vertex xi € X belongs to an edge D;j € D, then we say that they are
incident to each other. As one can see, as in graph theory, the adjacency is
referred to the elements of the same kind (vertices vs vertices, or edges vs
edges), while the incidence is referred to the elements of different kind (vertices

vs edges).
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D(x),x € X, will denote all the edges containing the vertex x. The number |D(x)|
is called the degree of the vertex x, the number |Di| is called the degree (size,

cardinality) of the edge Di. The maximum degree of the hypergraph H is denoted

by, r(H) =T3¢ | DGO

. A hypergraph in which all vertices have the same
degree k 2 0 is called k-regular .
A hypergraph in which all edges have the same degree r > 0 is called r-uniform.

The rank of a hypergraph H is r(H)=Tea)?(| & |

An edge of a hypergraph which contains no vertices is called an empty edge. The
degree of an empty edge is trivially 0. A vertex of a hypergraph which is incident
to no edges is called an isolated vertex. The degree of an isolated vertex is
trivially 0. An edge of cardinality 1 is called a singleton (loop), a vertex of degree

1is called a pendant vertex.

A simple hypergraph H with |Di| = 2 for each Di 2 D is thus a simple

graph, maybe with isolated vertices.

Two simple hypergraphs Hi and H; are called isomorphic if there
exists a one-to-one correspondence between their vertex sets such that any
subset of vertices form an edge in H1 if and only if the corresponding subset of

vertices forms an edge in Ha.
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CHAPTER 2

HYPERGRAPH PROPERTIES

2.1 HYPERGRAPH VARIATION

2.1.1 EMPTY HYPERGRAPH:
By definition the empty hypergraph is the hypergraph such that

V=¢
E=¢
2.1.2 TRIVIAL HYPERGRAPH:

Trivial hypergraph is a hypergraph such that
V2o
E=¢
2.1.3 UNIFORM HYPERGRAPH:

k-uniform hypergaph —When all hyperedges have the same cardinality
;50 a 2-uniform hypergraph is a classic graph,a 3-uniform hypergraph is a

collection of unordered triples, and so on.
2.1.4 ORDERED HYPERGRAPH :

An r-uniform hypergraph is said to be ordered if the occurence of nodes

in every edge is numbered from 1tor.

2.1.5 SIMPLE HYPERGRAPH: A hypergraph is simple if all edges are distinct.A
simple hypergraph is ahypergraph H=(V,E) such that e; € e; implies i=j. A simple
hypergraph has no repeated hyperedge.

9
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2.1.6 INDUCED SUB-HYPERGRAPH:

The induced subhypergraph H(V’)of the hypergraph H where V' € Vis the
hypergraph H(V’)=(V’,E’) defined as,

E'={V(ei )NV'2d:ei €EE and either e is loop or |V(e )NV’ |22}

The letter E’ can be represented a multi-set.Moreover ,according to the remark

above we can add, if we need the empty set.

Given a subset V' €V, the subhypergraph,the hypergraph H’ is the
hypergraph H'=(V’,E’=(gj )j es)such that for all e;€EE":e; S V'.

2.1.7 PARTIAL AND REGULAR HYPERGRAPH:
A partial hypergraph generated by J € I, H of H is a hypergraph
H'=(V’,(gj)jes) Where Ujes € € V'.Note that we may assume have V'=V.

If each vertex has the Same degree,we say that the hypergraph is regular

,or k-regular if for every x€ V,d(x)=k.

T — )
e Y e ™
/ / "l\ /;/ =5 \\
o -\_\ ////,< ../,/ o
" =5 _7\:’\7:’ // g
2 -, o
\\ C R o //'//7
g Sl
. SN =
2.2 EXAMPLE: e

The hypergaraph H has all 11 vertices; 5 hyperedges ;1 loop:es ;
2 isolated vertices: x11 ,Xg .
The rank r(H)= 4, the co-rank cr(H)= 1.

10
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The degree of x is 2.

H'= (V;{ei,e2}) is a partial hypergraph generated by J= {1,2};
H(V')= (V'={x1 ,Xa,Xe6 ,Xs, X10 };

er’'=e1NV'={x1,xa };

ex’=e2 N V'={Xa,Xs ,Xs }

esd=ea NV'={x1,Xs }

es’=es N V'={x10 } is an induced hypergraph .Notice that es N v'={xs } is not an

hyperedge for this induced hypergraph.

H'= (V'={x1,%2 ,X3 ,Xa ,x7 }, E={e1 }) is a sub hypergraph with 1 isolated vertex : x;

.Hypergraph H is linear and simple.

HYPERGRAPH PROPERTIES:

2.3 GRAPH VERSUS HYPERGRAPHS

Graphs:

A multigraph, I = (V; E) is a hypergraph such that the rank of I is at most two.
The hyperedges are called edges. If the hypergraph is simple, without loop, it is
a graph. Consequently any definition for hypergraphs holds for graphs. Given a
graph I, we denote by I (x) the neighborhood of a vertex x, i.e. the set formed

by all the vertices which form a edge with x:

M(x)={yE€V:{x, y} EE}
In the same way, we define the neighborhood of A € V as I (A) = Uxea I ().

The open neighborhood of Ais T°(A) =T (A) \ A.

11
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An induced subgraph generated by V' € V is denoted by I (V’). A graph ' = (V; E)
is bipartite if V=V1 U V2 with V1 n V2 = @ and every edge joins a vertex of Vi to

a vertex Va.

It is well known that a graph I = (V; E) is bipartite if and only if it does not contain
any cycle with an odd length. A graph is complete if any pair of vertices is an

edge.A clique of a graph I = (V; E) is a complete subgraph of I'.
The maximal cardinality of a clique of a graph I is denoted by w(I').

Remember that a graph is chordal if each of its cycles of four or more vertices

has a chord, that is, an edge joining two non-consecutive vertices in the cycle.

GRAPHS AND HYPERGRAPHS

Let H=(V; E=(ei)/i€l ) be a hypergraph such that Ez@. The line-graph
(or representative graph, but also intersection graph) of H is the graph L(H) =(V’;

E’) such that:
1.V =lor V':=E when H is without repeated hyperedge; 2.

{i,j}eE’ (izj)ifandonlyifeinej=0Q.

j/ e ) i = e
\ ‘:\*_ 3 e O }\f_i’ \
T N )
e I sk e 5

Figure above shows a hypergraph H = (V; E), where
V={x1, X2, X3, ..., X9 }, E={e1, e, e3, es, es}, and its representative. The vertices

of L(H) are the black dots and its edges are the curves between these dots.

12
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Some properties of hypergraphs can be seen on the line-graph, for instance

it is easy to show that:

2.4 Lemma : The hypergraph H is connected if and only if L(H) is.

2.5 Proposition : Any non trivial graph T is the line-graph of a linear
hypergraph.

Proof:

Let I = (V; E) be a graph with V = {x1, X2, . . . xa}. Without loosing generality,
we suppose that I'is connected (otherwise we treat the connected components

one by one). We can construct a hypergraph H = (W; X) in the following way:

. the set of vertices is the set of edges of ', i. e. W = E. It is possible since I

is simple.

. the collection of hyperedges X is the family of Xi where X; is the set of

edges of [ having xi as incidence vertex.
So we can write:
H=(E; X= (X1, Xz, ..., Xn)) with:
Xi={e€E:xi€e}wherei€{l,2,3,...}
Notice that if [ has only one edge then V = {x1, x2} and X1 = X..

It is the only case where H has a repeated hyperedge.
If |[E| >1,ifi#jand Xi n Xj# @; there is exactly one, (since I is a simple graph) e

€ Esuchthate € Xi n Xjwithe={xi, xj}. ltisclear that I is the line-graph of H

13
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Figure above illustrate proposition .

2.6 : INTERSECTING FAMILIES

Let H = (V; E = (ei )ic)) be a hypergraph. A subfamily of hyperedges (gj )j<i,
where J C | is an intersecting family if every pair of hyperedges has a non empty
intersection. The maximum cardinality of |J | (of an intersecting family of H) is

denoted by Ao(H).

2.7 : HELLY PROPERTY

The Helly property plays a very important role in the theory of
hypergraphs as the most important hypergraphs have this property . A
hypergraph has the Helly property if each intersecting family has a non-empty
intersection (belonging to a star). It is obvious that if a hypergraph contains a
triangle it has not the Helly property. A hypergraph having the Helly property
will be called Helly hypergraph. A hypergraph has the strong Helly property if
each partial induced subhypergraph has the Helly property. The hypergraph
shown figure below has the Helly property but it has not the strong Helly

property.

14
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THE HELLY PROPERTY:

Let H = (E1,Ez..,. ,.Em )b e a simple hypergraph. We say that H has the Helly

property if every intersecting family of H is a star, i.e. forJ © {1,2, ..., m},
EENEx=d (j,k €)) implies Njeg Ej &.

Hence a graph has the Helly property if and only if its is triangle-free;
hypergraphs with the Helly property have also other properties which generalise
those of triangle free graphs.

Example 2.7.1. Let H be an interval hypergraph: its vertices are points on a line,

and its edges are intervals of points. A theorem of Helly shows that H has the

Helly property.

We can characterize the strong Helly property by the following:

2.8 Theorem:

Let H be a hypergraph. Any partial induced subhypergraph of H has the Helly
property if and only if for any three vertices x, y, z and any three hyperedges ey,
€xz, yz Of H, where X € exy N ex;, Y €E €xy N €yz, Z € ex: N ey there exists v € {x, y, z}

such that v € exy N ex: N ey..
Proof :

Assume that any partial induced subhypergraph of H has the Helly property.
Then, for any three hyperedges ey, ex, ey of H, where x Eeyy N ex, y Eexy N ey,
Z Eex N ey, just take the partial subhypergraph H(Y ) induced by the set Y = {x,
y, z} to see that there is a vertex v E{x, y, z} such that: vE ey N ex N ey..

Fig. The hypergraph above has the Helly property but not the strong Helly

property because the induced subhypergraph on Y =V \{xa} contains the triangle:

15
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er’=e1 NY,
e=e2NnY,

es'=esNY .We prove the reversed implication by induction on £, the maximal
size of an intersecting family of an induced subhypergraph of H. The assertion is
clearly true for £ = 3. Assume that for i =3, 4, ... ,£ any partial induced
subhypergraph of H with intersecting families of at most £ hyperedges has the

Helly property.

Let e, 2, . . ., er1 be an arbitrary intersecting family of hyperedges of H. By

induction,
dX € Niz1 €, Ay € Nix2€;, Z € Nix3e; .

As {e1, e, e3}is an intersecting family, there is a vertex § € {x, y, z} which is in the

intersection e1 N e N es. Hence, € € N ei and the assertion holds for (£+ 1).

2.9 : SUBTREE HYPERGRAPHS

let H = (V; E) be a hypergraph. This hypergraph is called a subtree hypergraph if

16

Scanned with CamScanner



e there is a tree [ with vertex set V such that each hyperedge e € E induces a

subtreeinT .

Conversely, letT'=(V; A) be a tree, i.e. a connected graph without cycle. We build

a connected hypergraph H in the following way:

¢ the set of vertices of H is the set of vertices of T

e the set of hyperedges is a family E = (ei )ic(1,2,3..m} of subset V such that the

induced subgraph I' (V(ei )) is a subtree of I', (subgraph which is a tree).

Fig : A subtree hypergraph associated with a tree.

2.10 : STABLE (OR INDEPENDENT), TRANSVERSAL AND MATCHING

Let H = (V; (ei )ic1 ) be a hypergraph without isolated vertex.

A set A C Vis astable or an independent (resp. a strong stable) if no hyperedge

is contained in A (resp. |An V(ei)| <1, foreveryi€l).

The stability number a(H) (resp. the strong stability number o’(H)) is the

maximum cardinality of a stable (resp. of a strong stable).

17
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A set B C Vs a transversal if it meets every hyperedge i.e. for
alle € E, B n V(e)z @.

The minimum cardinality of a transversal is the transversal number. It is denoted

by t(H).
A matching is a set of pairwise disjoint hyperedges of H.

The matching number v(H) of H is the maximum cardinality of a matching. A

hyperedge cover is a subset of hyperedges:

(e])ies, (J € 1) such that: Ujei e = V.

The hyperedge covering number, p(H) is the minimum cardinality of a hyperedge

cover.

Fig. 2.12 The set [x}; x3: x5; x93 Xy} ; X3} is a stable of the hypergraph above but it is not a strong
stable. The set {x3; xg; x11;x13) is a transversal; T(H) = 3, p(H) = 4and v(H) = 3. It is
conformal and it has the Helly property

2.10.1 EXAMPLES :

(1)  The problem of scheduling the presentations in a conference is an
example of the maximum independent set problem. Let us suppose that
people are going to present their works, where each work may have more

than one author and each person may have more than one work.

18

Scanned with CamScanner




The goal is to assign as many presentations as possible to the same time slot
under the condition that each person can present at most one work in the same

time slot.

We construct a hypergraph with a vertex for each work and a hyperedge for each
person, it is the set of works that he (or she) presents. Then a maximum strong
independent set represents the maximum number of presentations that can be

given at the same time.

(2)  The problem of hiring a set of engineers at a factory is an example

of the minimum transversal set problem.

Let us suppose that engineers apply for positions with the lists of proficiency
they may have, the factory management then tries to hire the least possible
number of engineers so that each proficiency that the factory needs is covered

by at least one engineer.

We construct a hypergraph with a vertex for each engineer and an hyperedge
for each proficiency, then a minimum transversal set represents the minimum

group of engineers that need to be hired to cover all proficiencies at this factory.

2.11 :KONIG PROPERTY _: A matching in a hypergraph H is a family of

pairwise disjoint edges, and the maximum cardinality of a matching is denoted
V(H).

A matching can also be defined as a partial hypergraph Ho with A(Ho) = 1.

We note that for every transversal T and for every matching Ho,

|TNE|> 1 ( E€Ho) Thus

|Ho|< | T|, from when

V(H)=max |Ho|< T (H).
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We say that H has the Konig propertyif v(H)=1(H).
A covering of H will be a family of edges which covers all the vertices of H, that
is to say a partial hypergraph Hy with 6(H1) =mingex du1(x)> 1.
We write p(H) = min|H1 |.
Finally, a strongly stable set of H is by definition a set S € X such that

|SNE1|< 1 for every Ec H, and we write @ (H) = max |S].

2.12 :TRANSVERSAL HYPERGRAPHS

Let H = (E,.. .,Em ) be a hypergraph on aset X. Aset T € X is a transversal
of H if it meets all the edges, that is to say:
TNE=¢ (i=1,2,..,m)
The family of minimal transversals of H constitutes a simple hypergraph on
X called the transversal hypergraph of H, and denoted by Tr H.
Example 2.12.1. If the hypergraph is a simple graph G, a set S is stable if it
contains no edge, that is, if its complement X-S meets all the edges of G. Thus,

Tr G = {X-S/S is a maximal stable set of G}.
Example 2.12.2. The complete r-uniform hypergraph K, on X admits as minimal

\_ n-r+1
transversals all the subsets of X with n-r+1 elements. Thus Tr(k n)_‘k n .

2.13 The coefficients T and 1’:

For a hypergraph H we denote by t( H ) the transversal number, that
is to say, the smallest cardinality of a transversal; similarly, we denote by 1 ’(H)

the largest cardinality of a minimal transversal. Clearly:

)= i, | T < max [T = 2/
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Example 2.13.1: The finite projective plane of r: By definition, a projective
plane of rank r is a hypergraph having r? - r + 1 vertices (“points”), and r>-r + 1

edges (“lines”), satisfying the following axioms:

(1) every point belongs to exactly r lines;
(2 ) every line contains exactly r points;
(3) two distinct points are on one and only one line;
(4) two distinct lines have exactly one point in common.

Projective planes do not exist for every value of r (for example,
if r=7), but it is known that if r = p* + 1, with p prime, p 2 2,a 21, there exists a
projective plane of rank r denoted PG( 2, p® ) built on a field of p“ elements.
For example, the projective plane with seven points (“Fano configuration”) is
PG(2,2). It is clear that in a projective plane every line is a minimal transversal

set of H.

In the projective plane of seven points there are no others because H = Tr H
(given that any two edges meet and that the chromatic number of this
hypergraphis > 2 ) .For the projective planes of rankr> 3, we have 1(H ) =r, but

there exist other minimal transversals which are all of cardinality>2r+2.

Hence t’'(H)>r+ 2.

2.14 t-critical hypergraphs:

We say that a hypergraph H = (E1,Ea..,. ,Em ) is t-critical if the deletion of any
edge decreases the transversal number, that is to say, if

T(H-E)<t(H) (j=12,..,m)
Since we cannot have 1 (H-Ej )< t(H) - 1, this is equivalent to saying that if H is
t-critical with T (H ) = t+1, then t(H-E) =t for every EcH.
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2.14.1 Example:
r Y \_
The hypergraph k t+r is t-critical, since ‘t(k t+r)_t +1andif Eis an

i v
edge of k t+rthe hypergraph k ¢+ E has a transversal X-E of cardinality t .

2.15.1 Proposition :

Every t-critical hypergraph is simple.
Proof : Forif H = (E1.,. .,Em ) is T-critical and not simple, there exist two indices
i and j with E; € Ej. An optimal transversal of H-E; has t(H)-1 vertices, and since

it meets Ei it also meets E;. Therefore t(H)< t(H)-1, a contradiction.

2.15.2 Proposition :

Every hypergraph H with t( H ) =t + 1 has as a partial hypergraph, a t-critical
hypergraph H" with t(H’) = t+1.

Indeed, to obtain H’ it is enough to remove from H as many edges as one can
without changing the transversal number.

In a hypergraph H a vertex x is said to be critical if

T (H-H(X) < T (H ) -=-mmnm (1)

We note that (1) is equivalent to:

t(H-H(x)) = t(H)-1 --------- (2)

proof:

Indeed, if ( 1) holds then the hypergraph Hi=H -H (x)hasa transversal T1
of cardinality t(H)-1. The set T1U {x} is a transversal of H and, since its cardinality

is T(H ), it is @ minimum transversal. From this we obtain (2).
Conversely, if (2) holds, let T be a minimum transversal of H containing x . Then
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T-{x} is a transversal of H-H(x) of cardinality t(H)-1, from which ( 1) follows.

2.15.3 Proposition :

Every vertex of a 1-critical hypergraph is critical.

Proof:

Let H be a t-critical hypergraph and let x be one of its vertices. Since x is
contained in an edge, Esay, T(H-H (x))< t(H-E) < t(H) .
Thus x is a critical vertex.

Example .

Let us consider a simple graph G = (X ,E), connected and without bridges. Let H
be the hypergraph whose vertices are the edges of G and whose edges are the
elementary cycles of G. Through every edge of a graph without bridges there

passes a cycle. Hence H is a simple hypergraph on E .

For epe E there exists a maximal tree ( X,F ) with eoe F which spans G ; we

have t(H)=m(G)-n(G)+1, and every co-tree of G is a transversal of H. Therefore

E-F is a minimum transversal of H containing eo. Thus every vertex of H is critical.
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CHAPTER 3

HYPERGRAPH COLORINGS

3.1:Coloring
Let H = (V; E = (ei )ici )be a hypergraph and k = 2 be an integer.

A k coloring of the vertices of H is an allocation of colors to the vertices such

that:

(i) A vertex has just one color.

(ii) We use k colors to color the vertices.

(iii) No hyperedge with a cardinality more than 1 is monochromatic.

From this definition it is easy to see that any coloring induces a partition

of the set of vertices in k classes:
(C1,C3,Cs, ... ,Ck) such that fore € E(H), |e| > 1thene Ci,

Vie{l,2,3,...,k}L.Then e subset or equal to C;,for all ie{1,2,....k}.

/;H fti":_‘:v_ —

L T

o - \<,,ML I

/'__‘—7_

)

oy

11 Z(b) / ——

Figure shows a colored hypergraph /& where (r) is red and (b) is Bluwe. We have x(H) = 2
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The chromatic number x(H) of H is the smallest k such that H has a k-coloring.
3.1.1 EXAMPLE:

If H is the hypergraph which vertices are the different waste products of a
chemical production factory, and which hyperedges are the dangerous
combinations of these waste products. The chromatic number of H is the
smallest number of waste disposal sites that the factory needs in order to avoid

any dangerous situation.

3.2 : Chromatic Number

Let H = (E,E, . . . ,En) be a hypergraph and let k be an integer > 2 .

A k-coloring (of the vertices) is a partition (S4,S..,. , Sk ) of the set of vertices
into k classes such that every edge which is not a loop meets at least two classes

of the partition; that is to say

EcH,|E[>1=E¢Si(i=1,2,..,k).
A vertex in Si will be said to be a “vertex of colour i”, and S; (“the colour set i”)
may possibly be empty; the only “monochromatic” edges are therefore the

loops. For a hypergraph H its chromatic number ¥ (H ) is the smallest integer k

for which H admits a k-colouring.
3.2.1 Example:

If H is the hypergraph whose vertices are the different waste products in
a chemical production factory, and in which the edges are the dangerous
combinations of these waste products, the chromatic number of H is the
smallest number of waste disposal sites that the factory needs in order to avoid

any hazardous situation.
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We note that if the hypergraph H is a graph, the chromatic number of H coincides

exactly with the usual chromatic number.

For a hypergraph Hon X, aset S c Xis said to be stable if it does not contain any
edge E with |E| > 1. The stability number a(H ) o f H is the maximum cardinality

of a stable set of H.

3.3 :PARTICULAR COLORINGS

3.3.1 STRONG COLORING:

Let H = (V; E) be a hypergraph, a strong k-coloring is a partition (C1, Cy, . . .,
C« ) of V such that the same color does not appear twice in the same hyperedge.

In another words:
|e n Ci| £1 for any hyperedge and any element of the partition.

The strong chromatic number denoted by x(H) is the smallest k such that H has

a strong k-coloring.

3.3.2 EQUITABLE COLORING

Let H = (V; E) be a hypergraph, an equitable k-coloring is a k-partition
(C1,Cy, . .. ,Ck) of Vsuch that, in every hyperedge e, all the colors {1, 2, ..., k}

appear the same number of times, to within one, if k does not divide |ei|.
It is:

foralle € EI%J <len¢ < [%] ,i€{1,2, ..., k}

It is easy to see that a strong k-coloring is an equitable k-coloring.

3.3.3 GOOD COLORING:
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Let H = (V; E) be a hypergraph, a good k-coloring is a k-partition
(C1,Cy, . .. ,Ck ) of V such that every hyperedge e contains the largest possible
number of different colors, i.e. for every e € E, the number of colors in e is

min{|e|; k}.
3.3.3.1 Example:

Suppose a network for mobile phones. We can model this network by a

hypergraph in the following way:
* the set of vertices is the set of transmission relays.

* a hyperedge is a set of transmission relays which can pairwise interfere and

maximal for this property.

If we model a frequency by a color, a good coloring gives us the minimal number
of frequencies, k, we need so that communications do not interfere. In that case

we have necessarily k 2 r (H), (r (H) is the rank of H).

3.4 Lemma:

Let H = (V; E) be a hypergraph (withm = |E|),and C=(C1, C;,...,Ck) be a

good k-coloring of H, we have:
(i) if k < cr(H), (cr(H) is the co-rank of H) then C s a partition in k transversal sets;

(ii) if k = r (H) then the good coloring C is a strong coloring.

Proof : Assume

that k < cr(H).

By definition of a good coloring, if Ci is a set of vertices with color i, we must

have:

Cnez0,Vje{l1,2,...,m}.
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Hence Ciis a transversal of H. Assume now thatk>r (H). Lete € E, thenk > |e],
any two vertices belonging to e have different colors. Consequently, by

definition of a strong coloring, the good coloring C is a strong coloring.

3.5 UNIFORM COLORING:
Let H = (V; E) be a hypergraph with |V| =n.
A uniform k-coloring is a k-partition:

(C1, Cy, ..., Ck) of V such that the number of vertices of the same color is always

the same, to within one, if k does not divide n, i.e.

lg] <Ic| < [%] i €{1,2, ..., k}

3.5.1 Example: A airplane manufacturer has p days to construct a plane. If it

exceeds these p days, it pays a fine for each extra day. The construction of the

plane can be decomposed into n tasks:

V ={xX1, X2, X3, ..., Xn}

One task can be done in a day and a task is made by a workshop. Some
employees can make a set of tasks:

e1 € {x1, X2, X3, . . ., Xn}, Some others
can make a set of tasks:

€2 € {x1, X2, X3, . . ., Xn} and

so on with Ujei = V.

So we have a hypergraph on V without isolated vertex.

3.6 HYPEREDGE COLORING
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Let H = (V; E) be a hypergraph, a hyperedge k-coloring of H is a coloring of
the hyperedges such that:

(i) A hyperedge has just one color.
(ii) We use k colors to color the hyperedges.
(iii) Two distinct intersecting hyperedges receive two different colors.

The size of a minimum hyperedge k-coloring is the chromatic index of H. We will

denote it by q(H).

3.7 LEMMA

Let H be a hypergraph.
We have: q(H) = Ag(H) = A(H).

Where Ag(H) is the maximum cardinality of the intersecting families and A(H) is

maximum cardinality of the stars.

Proof :

Assume that Ao(H) = |. We need | distinct colors to color an intersecting family

with at least | hyperedges. Hence q(H) = Ao(H) = A(H).

A hypergraph has the hyperedge coloring property if q(H) = A(H). For

instance a star has the hyperedge coloring property.

3.8 BICOLORABLE HYPERGRAPHS

Bicolorable (or 2-colorable) hypergraphs are a generalization of
bipartite graphs.We remind the reader that a graph is bipartite if and only if it is

bicolorable. Recognizing if a graph is bipartite can be done in polynomial time.
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This is not the case for bicolorable hypergraphs: the problem of recognizing

bicolorable hypergraphs is well known to be

N i
,/ /-*-—-V\L,‘
< )i %
/ N \\

7 S -
// // \/ 7\‘. \
/ e gl ST T \

o /

Hypergraph which is not bicolorable.

Sometime bicolorable hypergraphs are called bipartite hypergraphs.

Figure above shows a non bicolorable hypergraph.

A cycle (x1, €1, X2, €2, . . ., Xk, €k, X1) is odd if it has a odd number of hyperedges.
An odd cycle (xi1, e1, X2, €2, . . ., Xk, €k, X1) With distinct vertices and

X1 E€e1 N ek is a Sterboul cycle if two non consecutive hyperedges are disjoint

and, foreveryi=1,2,..., k-1, |ein eu| =1.

3.9 THEOREM: Let I = (V; A) be a tree and H = (V; E) is a subtree hypergraph

associated with ', then H is bicolorable.

Proof:

If ['is a tree, it is bicolorable and any subtree has a induced bicoloring from the

2-coloring of I'. So H has a bicoloring.
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A hypergraph H = (V; E) is critical if it is not 2-colorable but any proper

subhypergraph is 2-colorable.

For instance, Fano hypergraph is critical.

3.10 GOOD EDGE COLORING

Let k be an integer = 2. A weak k-coloring of the edges of a
hypergraph H is the coloring defined by a weak k-coloring of the dual hypergraph
H*. It is thus a partition H = Hi+H2+ ...+ Hi (edge-disjoint sum) such that for every
vertex x with du (x) > 1, the star H ( x ) has at least two edges of different colors.
A good k-colouring of the edges of H is a weak k-colouring of the edges of H such
that if du (x)= k,the star H ( z ) contains at least one edge of each of the colours,
and if dy (x)<k ,the edges of the star H( z ) all have different colours. A strong
kcolouring of the edges of H is a partition H = H1+H2+ ...+ Hk such that the edges
of the star H ( z ) all have different colours. The chromatic index of H is the
smallest value of k for which a strong k-colouring of the edges exists; it is thus

the strong chromatic number {H*).

3.11 DEFINITION: Given a hypergraph H, we call a "positional game on H" the
situation where two players, say A and B, play in turn at colouring a vertex of H
, with the colour red for A and the colour blue for B. A vertex already coloured
cannot be recoloured; the winner is the one who first colours an edge of H
completely with his colour. If neither of the players obtains a monochromatic

edge then the game is a draw.

Example 1. Tic-Tac-Toe in p dimensions.
This is played on the set of cells of a hypercube of p dimensions of sides equal tor,

considered as a hypergraph on r” vertices (the cells of the hypercube) in which the
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edges are all the sets of r cells that are in line. This game has been studied by Hales and
Jewett [1963], who showed that if ris odd and 3P -1 or ris even and >2°*1-2, then

player B can force a draw.

One can also play by trying to colour three points in a line with the
same colour on any configuration at all, for example the projective plane with

seven points.

Example 2.

Ramsey games. Two players A and B play alternately colouring
respectively in red and blue an edge of the complete graph K., on vertices; the

first player to colour with his colour all the edges of a k-clique has won, and his
n
opponent has lost.The hypergraph H,, which must be considered has (2) vertices

k
and is (2)-uniform. A celebrated theory of Ramsey states that there exists an
integer R (k,k) such that for every n> R(k,k), the hypergraph Hn, has no bicolouring
(so that, in consequence, the first player has a winning strategy); if n ( k ) denotes

the smallest order for which the first player wins, we have n(k) <R (k,k) .

3.12 :FUNDAMENTAL PROPOSITION.

In a positional game on a hypergraph H which admits no uniform

bicolouring, the first player A has a strategy which assures him a win.

Proof: If H does not have a uniform bicolouring, there necessarily exists a
monochromatic edge when all the vertices have been coloured. Thus it is not
possible to have a drawn game. This implies, by the theorem of Zermelc-von

Neumann, that either player A or player B has a winning strategy.
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We argue by contradiction, and suppose that it is the second player B who

has a winning strategy o . Thus, with the following sequence of moves:

X1, Y1 =0(X1), X2,y2=0(x1,X2), X3,y3 =0(x1,%x2,X3 ),etc.

the first monochromatic edge will be blue, B’s colour. However the first player A
can play according to the following rule: xo being an arbitrary vertex, A’s first
choice will be x1 = a(xo0); A’s second choice will be x2 =g (xo,y1); etc. (If at any step,
Yi = Xo, that is to say player B chooses the arbitrary vertex xo, the player A will
play in the same manner with xi:1= g(xo,y1,Y2...,yi’) where y;’ is a new arbitrary
vertex not already coloured). In this manner A is assured of obtaining a win, and

the first monochromatic edge will be red: a contradiction.
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CHAPTER 4

APPLICATIONS OF HYPERGRAPH THEORY AND GENERALIZATIONS

4.1 :Hypergraph Theory and System Modeling for Engineering

Modeling is a particularly important aspect in apprehending the continuous or
discrete physical systems. The mathematical foundations of the modeling come

from:

e Algebraic theory

e The concepts of duality

e Complex and real analysis
e And many others

Since combinatorics is the common denominator of these mathematical areas,
combinatorial paradigms are suited to express the mathematical properties of
physical objects. Thus, it is natural to develop the hypergraph theory as a

modeling concept.

In this section, we are going to briefly present some applications of hypergraphs
in science and engineering. It turns out that hypergraph theory can be used in

many areas of sciences.

4.2 :Chemical Hypergraph Theory

The graph theory is very useful in chemistry. The representation of

molecular structures by graphs is widely used in computational chemistry. But
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the main drawback of the graph theory is the lack of convenient tools to
represent organometallic compounds, benzenoid systems and so on. A
hypergraph H = (V, E) is a molecular hypergraph if it represents molecular
structure, where x € V corresponds to an individual atom, hyperedges with
degrees greater than 2 correspond to polycentric bonds and hyperedges with
deg(x) = 2 correspond to simple covalent bonds.Hypergraphs appear to be more
convenient to describe some chemical structures.Hence the concept of
molecular hypergraph may be seen as generalization of the concept of molecular

graph.

4.3 :Hypergraph Theory for Telecommunications

A hypergraph theory can be used to model cellular mobile
communication systems.A cellular system is a set of cells where two cells can
use the same channel if the distance between them is at least some predefined

value D. This situation can be represented by a graph where:
(a) Each vertex represents a cell.

(b) An edge exists between two vertices if and only if the distance between the
corresponding cells is less than the distance called reuse distance and

denoted by D.

A forbidden set is a group of cells all of which cannot use a channel

simultaneously.

A minimal forbidden set is a forbidden set which is minimal with respect to this

property, i.e. no proper subset of a minimal forbidden set is forbidden.

From these definitions it is possible to derive a better modelization using

hypergraphs.
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We proceed in the following way:

(a) Each vertex represents a cell.

(b) A hyperedge is minimal forbidden set.

4.4 :Hypergraph Theory and Parallel Data Structures

Hypergraphs provide an effective mean of modeling parallel data
structures.A shared memory multiprocessor system consists of a number of
processors and memory modules. We define a template as a set of data
elements that need to be processed in parallel. Hence the data elements from a
template should be stored in different memory modules. So we define a

hypergraph in the following way:
(a) A data is represented by a vertex.

(b) The hyperedges are the templates.

4.5 :Hypergraphs and Constraint Satisfaction Problems

A constraint satisfaction problem, P is defined as a tuple: P
=(V, D, Ri(S1), . . ., Rk (Sk))
where:
e Vs a finite set of variables.
* D is a finite set of values which is called the domain of P.
e Each Ri (Si ) is a constraint.

—Siis an ordered list of ni variables, called the constraint scope.
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—Riis a relation over D of arity n;, called the constraint relation.

To a constraint satisfaction problem one can associate a hypergraph in the

following way:
(a) The vertices of the hypergraph are the variables of the problem.

(b) There is a hyperedge containing the vertices v1, va, ...,vi when there is some

constraint R (Si ) with scope S ={vi, vz, ... vt }.

Hypergraph theory can lead to numerous other applications .
Indeed we can find hypergraph models in machine learning,data mining, and so

on.The properties of hypergraphs are equally important.

for example; hypergraph transversal computation has a large number of
applications in many areas of computer science, such as distribued systems,
databases, artificial intelligence, and so on. Hypergraph partitioning is also a very

interesting property. The partitioning of a hypergraph can be defined as follows:

(a) The set of vertices is partioned into k disjoint subsets Vi, Va3, ...,Vk (b) The
partial subhypergraphs (or the set of hyperedges) generated by Vi, Va, ...,Vk

verify the properties Py, Py, ..., Pk.

This property yields interesting results in many areas such as VLSI design, data

mining, and so on.

Directed hypergraphs can be very useful in many areas of sciences. Indeed

directed hypergraphs are used as models in:
e Formal languages.
* Relational data bases.

e Scheduling.
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and many other applications. Numerous computational studies using
hypergraphs have shown the importance of this field in many areas of science

and other fruitful applications should be developed in the future.

4.6 Generalizations

One possible generalization of a hypergraph is to allow edges to point at other
edges. There are two variations of this generalization. In one, the edges consist
not only of a set of vertices, but may also contain subsets of vertices, subsets of
subsets of vertices and so on ad infinitum. In essence, every edge is just an
internal node of a tree or directed acyclic graph, and vertices are the leaf nodes.
A hypergraph is then just a collection of trees with common, shared nodes (that
is, a given internal node or leaf may occur in several different trees). Conversely,
every collection of trees can be understood as this generalized hypergraph. Since
trees are widely used throughout computer science and many other branches of
mathematics, one could say that hypergraphs appear naturally as well. So, for
example, this generalization arises naturally as a model of term algebra; edges
correspond to terms and vertices correspond to constants or variables. For such
a hypergraph, set membership then provides an ordering, but the ordering is
neither a partial order nor a preorder, since it is not transitive. The graph
corresponding to the Levi graph of this generalization is a directed acyclic graph.
Consider, for example, the generalized hypergraph whose vertex set is V={a,b}
and whose edges are ei={a,b}{ and e>={a,e1 }. Then although b € e; and e1 € e2,it
is not true that b € e>. However, the transitive closure of set membership for
such hypergraphs does induce a partial order, and "flattens" the hypergraph into

a partially ordered set.
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Alternately, edges can be allowed to point at other edges, irrespective of the
requirement that the edges be ordered as directed, acyclic graphs. This allows
graphs with edge-loops, which need not contain vertices at all. For example,
consider the generalized hypergraph consisting of two edges e and e; and zero
vertices ,so that e1 ={e> } and e; ={e1}.As this loop is infinitely recursive, sets that
are the edges violate the axiom of foundation. In particular, there is no transitive
closure of set membership for such hypergraphs. Although such structures may
seem strange at first, they can be readily understood by noting that the
equivalent generalization of their Levi graph is no longer bipartite, but is rather

just some general directed graph.

The generalized incidence matrix for such hypergraphs is, by definition,
a square matrix, of a rank equal to the total number of vertices plus edges. Thus,

for the above example, the incidence matrix is simply

0 1
1 0
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CONCLUSION

In recent decades ,the theory of hypergraphs has been applied to real
life problems.The tools of hypergraph theory can be used for modelling
networks,biological networks,data structures,scheduling processes and
computations,and many other systems with complex relationships between the
entities.From the theoretical point of view ,hypergraphs make it possible to
generalize certain theorems in graph theory or even replace a number of
theorems on graphs by one theorem on hypergraphs .However ,the majority of
the potentials in the development of hypergraph theory are blocked due to
inconsistencies in the basic terms.It is proposed to make up a list of basic terms

related to hypergraph theory,which can help standardize the graph.
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