

1

AN INTRODUCTION TO ALGEBRAIC

 CODING THEORY

 Project Report Submitted To

 MAHATMA GANDHI UNIVERSITY

 In partial fulfillment of the requirement

 For the award of

THE MASTER DEGREE IN MATHEMATICS

BY

REMONA BASTIN

M.S.c (IV Semester) Reg No. 180011015187

DEPARTMENT OF MATHEMATICS

ST PAUL’S COLLEGE, KALAMASSERY

2018 - 2020

2

CERTIFICATE

 This is to certify that the project entitled “AN INTRODUCTION

TO ALGEBRAIC CODING THEORY” is a bonafide record of studies

undertaken by REMONA BASTIN (Reg no. 180011015187), in partial

fulfillment of the requirements for the award of M.Sc. Degree in Mathematics at

Department of Mathematics, St. Paul’s College, Kalamassery, during 2018–

2020

Dr Savitha K S Dr Pramada Ramachandran

Head of Department of Mathematics Department of Mathematics

Examiner :

3

DECLARATION

 I Remona Bastin hereby declare that the project entitled “An

Introduction To Algebraic Coding Theory” submitted to department of

Mathematics St. Paul’s College, Kalamassery in partial requirement for the

award of M.Sc Degree in Mathematics, is a work done by me under the

guidance and supervision of Dr. Pramada Ramachandran, Department of

Mathematics, St. Pauls’s College , Kalamassery during 2018 – 2020.

 I also declare that this project has not been submitted by me fully or

partially for the award of any other degree, diploma, title or recognition earlier.

Date: Remona Bastin

Place :Kalamassery

4

ACKNOWLEDGEMENT

 I express my heartfelt gratitude to my guide Dr. Pramada

Ramachandran , Department of Mathematics, St Paul’s College, Kalamassery

for providing me necessary stimulus for the preparation of this project.

 I would like to acknowledge my deep sense of gratitude to

Dr. Savitha K.S, Head of the Department of Mathematics, St Paul’s College

Kalamassery and all other teachers of the department and classmates for their

help at all stages.

 I also express my sincere gratitude to Prof. Valentine D’Cruz, Principal,

St. Paul’s College, Kalamassery for the support and inspiration rendered to me

in this project report.

 I also wish to express my sincere thanks to all the faculty members of

Department of Mathematics for the help and encouragement to bring this

project a successful one

Kalamassery Remona Bastin

5

 AN

 INTRODUCTION TO

 ALGEBRAIC CODING

 THEORY

6

CONTENTS
1 Introduction 7

1.1 Passing Notes

1.2 Basic Assumption

1.3 Correcting and Detecting Error Patterns

1.4 BCD Codes

2 Digital Arithmetic 16

 2.1Number System

 2.2Boolean and Bitwise Operation

 2.3Residues, Residue Classes and Congruences

3 Hamming Codes 27

 3.1Error Correcting Codes

 3.2Hamming (7,4) Code

 3.3(a)Syndrome and Error Detection

 3.3(b)Syndrome and Error Correction

4 LDPC Codes 39

 4.1Introduction

 4.2Representations of LDPC Codes

4.3Tanner Graphs

 4.4Decoding LDPC Codes

Bibliography 46

7

 Chapter 1

 Introduction

1.1Passing Notes

 Suppose you are sitting in your English Class and you are handed a note which

reads ‘THIS CLPSS IS BORING’. You immediately notice the error in the note,

and in addition to wondering how the author of the note ever got into college,

you wonder what the actual intended message was. Very quickly you replace

‘CLPSS’ with ‘CLASS’ and the meaning becomes clear. You have just applied

some coding theory in your English class by detecting and correcting an error,

but how did you do it? In order to detect and correct the error so quickly, you

made three assumptions:

1. That a correct word will be an English word.

2. That the correct word contains five letters.

3. That it is more likely that only one letter was incorrect as opposed to two or

more.

For now, we will ignore the assumption that the correct word should make

sense in the context of entire message. Assumption 2 allowed us to make

sense of the errant message, but it does have a weakness. In the above

example ‘CLASS’ was the only English word we could make by changing one

letter in ‘CLPSS’, but what if the received word was ‘CLASK’? Now by changing

one letter we can make words like ‘FLASK’ and ‘CLASP’ as well as ’CLASS’. Using

only our assumptions (1 and 2) we cannot justify choosing one word over

8

another, that is, in this case we cannot correct the error. In some cases our two

assumptions may not even let us catch errors, for example if the received word

was an English word, but the wrong one, say ‘GLASS’.

The above situation can be thought of as a simple example of interpreting a

message with a decoding algorithm. This is an absolutely crucial process in

fields like telecommunication, electrical engineering, and computing where

data is sent over a noisy “channel” where it may be altered before it is

received. The main aims of Coding Theory are to detect and correct

transmission errors as thoroughly and rapidly, and thus as efficiently as

possible. Note that Coding Theory is NOT cryptography, that is it doesn’t

protect data from malicious eyes.

 The typical model of this system is as follows:

 → → → →

 → → →

 We will now begin a mathematical treatment of Coding Theory in order to

understand the development of this fascinating (and useful!) field of study

 Sender

(Message)
Encoder Channel

(Noise)

Decoder Receiver

(User)

‘CLASS’ ‘CLPSS’ ’CLASS’
Comprehended

note

9

1.2 BASIC ASSUMPTIONS

We state some fundamental definitions and assumptions which we will apply

throughout.

1.2.1 Definition

 In many cases, the information to be sent is transmitted by a sequence

of zeros and ones.

 We call a 0 or 1 a digit.

 A word is a sequence of digits.

 The length of a word is the number of digits in the word. Thus

0110101 is a word of length seven. A word is transmitted by sending

its digits, one after to other, across a binary channel.

 The term ‘binary’ refers to the fact that only two digits 0 and 1 are

used. Each digit is transmitted mechanically, electrically, magnetically

or otherwise by one of two types of easily differentiated pulses.

 A binary code is a set C of words. The code consisting of all words of

length two is C= {00, 10, 01, 11}

 A block code is a code having all its word of the same length; this

number is called the length of a code. We will consider only block

codes. So, for us the term code will always mean a binary block code.

 The word that belong to a given code C0, will be called code-words.

We shall denote the number of code-words in a code C by │C│.

 Self-complementing binary codes are those whose members

complement on themselves. For a binary code to become a self-

complementing code, the following two conditions must be satisfied:

10

 The complement of a binary number should be obtained from that

number by replacing 1’s with 0’s and 0’s with 1’s

 The sum of the binary number and its complement should be equal to

decimal 9.

 In weighted codes, each digit is assigned a specific weight according to its

position. ... Examples:8421,2421,7421 are all weighted codes.

 Non-weighted codes: The non-weighted codes are not

positionally weighted.In other words codes that are not assigned with

any weight to each digit position.

 A linear code is a type of block code used in error detection and correction

in transmitting bits or data on a communications channel. A linear code of

length n transmits blocks containing n bits (symbols).

We also need to make certain basic assumptions about the channel. These

assumptions will necessarily shape the theory that we formulate.

 The first assumption is that a code-word of length n consisting of

0's and 1's is received as a word of length n consisting of 0's and

1's, although not necessarily the same as the word that was sent.

 The second is that there is no difficulty identifying the beginning

of the first word transmitted. Thus, if we are using code-words of

length 3 and receive 011011001 we know that the words

received are in order, 011, 011, 001 . This assumption means,

again using length 3, that the channel cannot deliver 01101 to

the receiver, because a digit has been lost here.

 The final assumption is that the noise is scattered randomly as

opposed to being in clumps called bursts. That is, the probability

of any one digit being affected in transmission is the same as that

of any other digit and is not influenced by errors made in

11

neighbouring digits. This is not a very realistic assumption for

many types of noise such as lightning or scratches on compact

discs. We shall eventually consider this type of noise.

 In a perfect, or noiseless, channel, the digit sent, 0 or 1, is always the

digit received. If all channels were perfect, there would be no need for

coding theory. But fortunately (or unfortunately, perhaps) no channel is

perfect; every channel is noisy. Some channels are less noisy or more

reliable, than others.

 A binary channel is symmetric if 0 and 1 are transmitted with equal

accuracy; that is the probability of receiving the correct digit is

independent of which digit,0 or 1, is being transmitted

1.3. CORRECTING AND DETECTING ERROR PATTERNS

 We consider now the possibilities of correcting and detecting errors. In

this section we intend to develop an intuitive understanding of the concepts

involved in correcting and detecting errors, while a formal approach is adopted

in later sections.

 Suppose a word is received that is not a codeword. Clearly some error

has occurred during the transmission process, so we have detected that an

error (perhaps several errors) has occurred. If however a codeword is received,

then perhaps no errors occurred during transmission, so we cannot detect any

error.

 The concept of correcting an error is more involved. As in the

introduction when we were inclined to correct 'gub' to 'gun' rather than to

'rat', we appeal to intuition to suggest that any received word should be

corrected to a codeword that requires a few changes as possible. (In a later

12

section we show that the probability that such a codeword was sent is at least

as great as the probability that any other codeword was sent). To consolidate

these ideas, we shall discuss some particular codes. Notice that our

assumption that no digits are lost or created in transmission precludes

decoding 'gub' to 'fire truck'.

Example 1.3.1

 Let C1 = {00, 01, 10, 11} Every received word is a codeword and so C1 cannot

detect any errors. Also C1 corrects no errors since every received word requires

no changes to become codeword.

 Example 1.3.2

 Modify C1 by repeating each codeword three times. The new code is

 C2 = {000000, 010101, 101010, 111111}.

 This is an example of a repetition code. Suppose that 110101 is received.

Since this is not a codeword we can detect that at least one error has occurred.

The codeword 010101 can be formed by changing one digit, but all other

codewords are formed by changing more than one digit. Therefore we expect

that 010101 was the most likely codeword transmitted, so we correct 110101

to 010101. (A codeword that can be formed from a word w with the least

number of digits being changed is called a closest codeword; this idea is

formalized later.) In fact if any of the codewords, c element of C2, is

transmitted and one error occurs during transmission, then the unique closest

codeword to the received word is c; so any single error results in a word that

we correct to the codeword that was transmitted.

13

1.4 . BCD Codes

 During the earliest period of development of this subject, the binary-

coded decimal (BCD) codes (or systems, as they were called then) were

popular, and some of them have been used even in modern times These codes

were based on the premise that, in addition to the number systems with base

b, there are other special number systems that are hybrid in nature and are

useful in computation, as computer inputs and outputs are mostly in decimal

notation.

 Four-Bit BCD Codes.

 These codes are defined as follows.

a) 8421 code. A number system in base b requires a set of b distinct

symbols for each digit. In computing the decimal (b = 10) and the binary

(b = 2) number systems we need a representation or coding of the

decimal digits in terms of binary symbols (called bits). This requires at

least four bits, and any 10 out of the 16 possible permutations of these

four bits represent the decimal digits. A systematic arrangement of

these 10 combinations is given in Table (a), where d denotes the decimal

digit. In the BCD code, the weights of the positions are the same as in

the binary number system, so that each decimal digit is assigned a

combination of bits, which is the same as the number represented by

the four components regarded as the base 2 number. This particular

code is also called direct binary coding. The nomenclature 8421 follows

14

from the weights assigned by the leftmost 1 in the successive bits in this

representation.

 The 8421 code uses four bits to represent each decimal digit. For

example, the number 697 is represented by the 12-bit number 0110

1001 0111, which has 3 four-bit decades. Although this number contains

only 0s and 1s, it is not a true binary number because it does not follow

the rules for the binary number system. In fact, by base conversion rules

we have (697)10 = (1010111001)2. Thus, it is obvious that arithmetic

operations with the 8421 code or any other BCD code would be very

involved. However, as we shall soon see, it is quite easy for a computer

program to convert to true binary, perform the required computations,

and reconvert to the BCD code.

 A digital computer can be regarded as an assembly of two-state

devices as it computes with 0’s and 1’s of the binary system. On the

other hand, we are accustomed to decimal numbers. Therefore, it is

desirable to build a decimal computing system with two-state devices.

This necessity has been responsible for the development of codes to

encode decimal digits with binary bits. A minimum of four bits are

needed.

The following features are desirable in the choice of a code:

(i) Ease in performing arithmetical operations;

(ii) Economy in storage space;

(iii) Economy in gating operations, error detection, and error correction;

(iv) Simplicity.

b) Excess-3 code. This code represents a decimal number d in terms of the

binary equivalent of the number d + 3. It is a self-complementing but not

15

a weighted code, and since it does follow the same number sequence as

binary, it can be used with ease in arithmetical operations.

c) 2421 code. This code is a self-complementing weighted code, commonly

used in bit counting systems. Other weighted codes are: 5421 code,

5311 code, and 7421 code, which are presented in Table (a).

 Table (a) : BCD Code

D

 8421 Excess -3 2421 5421 5311 7421

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

0000

0001

0010

0011

0100

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

1000

1001

1010

1011

1100

0000

0001

0011

0100

0101

1000

1001

1010

1011

1100

0000

0111

0110

0101

0100

1010

1001

1000

1111

1110

16

 Chapter -2

 Digital Arithmetic

In this chapter we describe constructive procedures in the form of error

detecting, correcting, and decoding codes that are used for encoding messages

being transmitted over noisy channels. The goal of such codes is to decode

messages with no error rate or the least error rate. Most of these codes

involve certain basic iterative procedures for simple error-correcting codes,

which are described in detail in the following chapters. During the past half

century, coding theory has shown phenomenal growth, with applications in

areas such as communication systems, storage technology, compact disc

players, and global positioning systems. Before we enter into these

developments, we must review some basic digital logic and related rules that

are useful for the development of the subject.

2.1 Number Systems

In addition to the decimal number system, we will discuss binary, ternary,

octal, duodecimal, and hexadecimal systems.

2.1.1 Decimal Numbers.

 This system, also known as the base-10 system, uses ten symbols (units) 0

through 9 and positional notation to represent real numbers in a systematic

manner. The decimal (from Latin decimus, meaning ‘tenth’) system is also

known as denary from Latin denarius which means the ‘unit of ten’. The real

numbers are created from the units by assigning different weights to the

17

position of the symbol relative to the left or right of the decimal point,

following this simple rule: Each position has a value that is ten times the value

of the position to the right. This means that each positional weight is a multiple

of ten and is expressible as an integral power of ten.

The positional scheme can be expressed as follows:

 10p ……..103 102101 100 . 10-1 10-2 10-3…………10-q

 ↑

 Decimal point

Figure 2.1.1 Positional scheme of the decimal number system

 TABLE 2.1.1 Different Number Systems

Decimal Binary Octal Duodecimal Hexadecimal

0 0 0 0 0

1 01 1 1 1

2 10 2 2 2

3 11 3 3 3

4 100 4 4 4

5 101 5 5 5

6 110 6 6 6

7 111 7 7 7

8 1000 10 8 8

9 1001 11 9 9

10 1010 12 Α A

18

11 1011 13 Β B

12 1100 14 10 C

13 1101 15 11 D

14 1110 16 12 E

15 1111 17 13 F

 Example 2.1.1.

 The binary number 101111011010 is converted to octal as follows:

Binary 101 111 011 010

 ↓ ↓ ↓ ↓

 Octal 5 7 3 2

Hence, (101111011010)2 = (5732)8. Note that the leading zeros are

added to the remaining leftmost one or two digits without affecting the binary

number in order to complete the leftmost 3-bit binary digit. The above process

can easily be reversed. If an octal number is given, say (1534)8, then the

equivalent

 Binary number is found as follows:

Octal 1 5 3 4

 ↓ ↓ ↓ ↓

Binary 001 101 011 100

Hence, (1534)8 = (001101011100)2 = (1101011100)2, after discarding the two

leading zeros.

19

2.2 Boolean and Bitwise Operations

The distinction between Boolean logical and bitwise operations is important.

This section is devoted to these two topics, which play a significant role in the

construction of different codes.

2.2.1 Boolean Logical Operations.

The truth tables for classical logic with only two values, ‘true’ and ‘false’,

usually written T and F, or 1 and 0 in the case of the binary alphabet A = {0,1},

are given in Table 2.2.1 for most commonly used operators AND, OR, XOR,

XNOR, IF-THEN, AND THEN-IF. The operator NOT is defined by NOT 0=1, and

NOT 1=0. The others are:

Table 2.2.1. Boolean Logical Operators

P Q AND OR XOR XNOR IF-THEN THEN-IF

0 0 0 0 0 1 1 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 0 1

1 1 1 1 0 1 1 1

2.2.2 Bitwise Operations.

 A bitwise operation is carried out by operators like NOT, AND, OR, AND XOR,

which operate on binary numbers or one or two bit patterns at the level of

their individual bits. These bitwise operators are defined as follows.

20

 NOT (¬). This operator, also known as the complement, is a unary operation

that performs a logical negation at each bit. Thus, digits that were 0 become 1,

and conversely.

For example,

 NOT 0110 = 1001. In certain programming languages, such as C or C++, the

bitwise NOT is denoted by ∼ (tilde). Caution is needed not to confuse this

bitwise operator with the corresponding logical operator ‘!’ (exclamation

point), which treats the entire value as a single Boolean, i.e., it changes a true

value to false, and conversely. Remember that the ‘logical NOT’ is not a bitwise

operation.

AND (& or ∧). This bitwise operation takes two binary representations of equal

length and operates on each pair of corresponding bits. In each pair, if the first

bit is 1 and the second bit is 1, then the result is 1; otherwise the result is 0.

This operator, as in the C programming languages, is denoted by ‘&’

(ampersand), and must not be confused with the Boolean ‘logical AND’ which

is denoted by ‘&&’ (two ampersands). An example is: 0101 & 0011 = 0001. The

arithmetic operation ‘+’ and bitwise operation ‘& ’ are given side-by-side in

Table 2.2.2. In general, the expressions x + y and x & y will denote the

arithmetic and bitwise addition of x and y, respectively.

OR (|). This operation takes two binary representations of equal length and

produces another one of the same length by matching the corresponding bit,

i.e., by matching the first of each, the second of each, and so on, and

performing the logical inclusive OR operation on each pair of corresponding

bits. Thus, if in each pair the first bit is 1 or the second bit is 1 or both, then the

result is 1; otherwise it is 0. Thus, for example, 0101 OR 0011 = 0111. In C

21

programming languages the bitwise OR is denoted by | (pipe), and it must not

be confused with the logical OR which is denoted by ∨ (from Latin vel) or by ||

(two pipes)

XOR (⊕). This bitwise operator, known as the bitwise exclusive-or, takes two

bit patterns of equal length and performs the logical XOR operation on each

pair of the corresponding bits. If two bits are different, then the result is 1; but

if they are the same, then the result is 0.

Thus, for example, 0101 ⊕ 0011 = 0110.

 In general, if x,y,z are any items, then

(i) x ⊕ x = 0,

(ii) x ⊕ 0 = x,

(iii) x ⊕ y = y ⊕ x, and

(iv) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).

In C programming languages, the bitwise XOR is denoted by ⊕.

Table 2.2.2 Arithmetic and Bitwise Operations

 Bitwise Operations Arithmetic and Bitwise Operations

P Q AND OR XOR ‖ p q + AND OR XOR

0 0 0 0 0 ‖ 0 0 0 0 0 0

0 1 0 0 1 ‖ 0 1 1 0 0 1

1 0 0 0 1 ‖ 1 0 1 0 0 1

1 1 1 1 0 ‖ 1 1 10 1 1 0

22

The bitwise XOR operation is the same as addition mod 2. The XOR function

has the following properties, which hold for any bit values (or strings) a,b, and

c:

Property 1.

a⊕a = 0;

a⊕0 = a; a⊕1 =∼ a, where ∼ is bit complement;

a ⊕ b = b ⊕ a;

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;

a ⊕ a ⊕ a = a,

 and if a ⊕ b = c, then c ⊕ b = a and a ⊕ a = b.

Property 2.

 As a consequence of Property 1, given (a ⊕ b) and a, the value of the bit b is

determined by a ⊕ b ⊕ a = b. Similarly, given (a ⊕ b) and b, the value of a is

determined by b ⊕ a ⊕ b =a. These results extend to finitely many bits, say

a,b,c,d, where given (a ⊕ b ⊕ c ⊕ d) and any 3 of the values, the missing

value can be determined. In general, for the n bits a1,a2,... ,an, given a1 ⊕ a2⊕ ·

· · ⊕ an and any (n − 1) of the values, the missing value can be easily

determined.

Property 3. A string s of bits is called a symbol. A very useful formula is s ⊕ s =

0 for any symbol s.

23

1.2.3 Applications.

Some applications involving the above bitwise operations are as follows:

 The bitwise AND operator is sometimes used to perform a bit mask

operation, which is used either to isolate part of a string of bits or to determine

whether a particular bit is 1 or 0. For example, let the given bit pattern be

0011; then, to determine if the third bit is 1, a bitwise AND operation is

performed on this bit pattern and another bit pattern containing 1 in the third

bit. Thus, 0011 and 0010 = 0010. Since the result is non-zero, the third bit in

the given bit pattern is definitely 1. The name ‘bit masking’ is analogous to use

masking tape to mask or cover the parts that should not be changed.

 The bitwise AND operator can be combined with the bitwise NOT to

clear bits. Thus, consider the bit pattern 0110. In order to clear the second bit,

i.e., to set it to 0, we apply the bitwise NOT to a arbitrary bit pattern that has 1

as the second bit, followed by the bitwise AND to the given bit pattern and the

result of the bitwise NOT operation. Thus, [NOT 0100] AND 0110 = 1011 AND

0110 = 0010.

 The bitwise OR is sometimes applied in situations where a set of bits is

used as flags. The bits in a given binary number may each represent a distinct

Boolean variable. By applying the bitwise OR to this number, together with a

bit pattern containing 1, will yield a new number with that set of bits. As an

example, given the binary number 0010, which can be regarded as a set of four

flags, where the first, second, and fourth flags are not set (i.e., they each have

value 0) while the third flag is the set (i.e., it has value 1), the first flag in this

given binary number can be set by applying the bitwise OR to another value

with first flag set, say 1000. Thus, 0010 OR 1000 = 1010. This technique is used

24

to conserve memory in programs that deal with a large number of Boolean

values.

 The bitwise XOR operation is used in assembly language programs as a

short-cut to set the value of a register to zero, since operating XOR on a value

against itself always yields zero. In many architectures this operation requires

fewer CPU clock cycles than the sequence of operations that are needed to

load a zero value and save it to the registers. The bitwise xor is also used to

toggle flags in a set of bits. For example, given a bit pattern 0010, the first and

the third bits may be toggled simultaneously by a bitwise XOR with another bit

pattern with 1 in the first and the third bits, say 1010. Thus, 0010 ⊕ 1010 =

1000.

2.3 Residues, Residue Classes, and Congruences

For each pair of integers n and b, b > 0, there exists a pair of integers q and r

such that n = bq + r, 0 ≤ r < b.

The quantity r is called the residue of n modulo b and is denoted (in Gaussian

notation) by b│n . For example 5│15=0, 5│17=2. Further if n≥0 then b│n=r is

the remainder, and q is the quotient when n is divided by b. The quantities q

and r are unique (proof of uniqueness follows from the division algorithm)

 Consider the class in which a comparison is made of the remainders when

each of the two integers n and m are divided by b. If the remainders are the

same then b│(n-m) and we say that the two numbers n and m have the same

residue modulo b, so that n and m differ by an integral multiple of b. In this

case we say that n and m are congruent modulo b and write n ≡ m (mod b).

25

The symbol ≡ is an equivalence relation (with respect to a set); that is, it is a

relation R between the elements of a set such that if α and β are arbitrary

elements, then either α stands in a relation R to β (written as α R β), or it does

not.

 Moreover, R has the following properties:

(i) α R α (reflexive);

(ii) if α R β, then β R α (symmetric); and

(iii) if α R β and β R ϒ, then α R ϒ (transitivity)

 The equality between numbers is an equivalent relation for either α = β, or

α ≠β; α = α; if α = β, then β = α; and if α = β and β = ϒ, then α = ϒ. Other

examples are congruency of triangles, similarity of triangles, parallelism of

lines, children having the same mother, or books by the same author. The

congruency n ≡ m (mod b) possesses the above three properties. In fact, we

have

Theorem 2.3.1.

 Congruence modulo a fixed number b is an equivalence relation.

 Proof. There are three cases

(i) b│(n-n) so that n≡n (mod b)

(ii) If b│(n-m), then b(m-n); thus if n≡m (mod b), then m≡n (mod b)

(iii) If b(n-m) and b(m-l), then n-m≡kb, m-l ≡jb where k and j are

integers. Thus, n − l = (k + j)b, i.e., if n ≡ m (mod b) and m ≡ l (mod

b), then n ≡ l (mod b).

26

Lemma 2.3.2:

 If a│bc and (a,b)=1 then a│c

Proof.

 If (a,b) = 1, then there exist integers x and y such that ax+by = 1. Multiply both

sides of the equality by c. Then acx+bcy = c, and a divides both ac and bc.

Hence a divides c.

Theorem 2.3.3.

 The following results are true:

 (i) If m ≡ n (mod b) and u ≡ v mod (b), then the following congruencies hold:

 (a) m + u ≡ n + v (mod b),

 (b) mu ≡ nv (mod b),

 (c) k m ≡ k n (mod b) for every integer k;

 (ii) if k m ≡ k n (mod b) and (k,b) = d, then m ≡ n (mod
𝑏

𝑑
), where (k,n) = d means

d is the g.c.d. of k and b.

(iii) If f(x) is a polynomial with integral coefficients and m ≡ n (mod b), then

f(m)≡ f(n) (mod b).

27

 Chapter -3

 Hamming Codes

3.1 Error Correcting Codes

Error detection and error correction are integral parts of many high-reliability

and high-performance computer and transmission/storage devices. In data

storage systems, memory caches are used to improve system reliability. The

cache is generally placed inside the controller between the host interface and

the disk array. Any reliable cache memory design must include errorcorrection

code (ECC) functions to safeguard the loss of data. Similarly, ECC is an

important design aspect of many communication applications, such as satellite

receivers. The significance of ECC lies in performance and cost efficiency by

correcting any error and avoiding repeated retransmission of data. When a

message or data is transmitted through a channel, the data received depends

on the properties of the resulting errors, which may be caused by the

characteristics of the channel and the system.

There are three major categories of errors that are encountered:

1. Random errors. These are bit errors that are independent of one another;

they are generally caused by the noise in the channel. They are simply isolated

erroneous bits in a message or data, caused by thermal (voltage) noise in

communication channels.

28

2. Burst errors. These are bit errors that occur sequentially in time and groups.

Sometimes defects in the digital storage media cause these kinds of errors.

They are difficult to correct by some codes, although block codes can handle

this kind of errors effectively.

3. Impulse errors. These are large blocks of data that are full of errors; they are

typically caused by lightning strikes or major system failures. Impulse errors

generally cause catastrophic failures in a communication system; they are so

severe that they are not even recognized or detected by forward error

correction.

In general, all simple error correction codes are not sufficiently efficient to

detect and correct burst and impulse errors, and they fail to reconstruct the

message in the case of catastrophic errors. In the current state of

advancements in this field, the Reed-Solomon codes were designed specifically

to correct random and burst errors, and detect the presence of catastrophic

errors by examining the message. If the number of errors per data is small,

these errors can be totally corrected using the Reed-Solomon codes. These

codes are therefore very useful in system design since they flag the

unrecoverable message at the decoder. We will first discuss simple error

detection and error correction codes, and slowly build up the analysis and

description to finally reach the state-of-the-art aspects of modern coding

theory.

3.1.1 Binary Linear Hamming Codes.

These codes were discovered by R. W. Hamming and M. J. G. Golay. In

particular, the Hamming code refers to the (7,4) code introduced by

Hamming in 1950 to provide a single error correction and double error-

29

detection (SEC-DED) code for errors introduced on a noisy communication

channel. It was used to reduce the computer resonance and time that was

wasted when the message was corrupted without the receiver realizing it

and lending to the failure of communication. In general, all binary Hamming

codes of a given length are equivalent. The dimension of a binary linear (n,k)

code of length n = 2k −1 is n − k, where k is the number of data bits in the

code, and its distance is d = 3, thus making it an exactly single-error

correcting code.

3.2 Hamming (7,4) Code

This code has 4 data bits and 3 parity bits, hence the name. The parity bits

are denoted by 2r, r = 0,1,2, i.e., the bit numbers 1,2,4. Thus, using the

exponent form, the three parity bits, denoted by p1,p2,p4, are added to every

four data bits of message, denoted by d1,d2,d3,d4, forming a codeword

c = {p1,p2,d1,p4,d2,d3,d4} that is used to detect all single-bit and two bit errors

and correct only a single-bit error. The algorithms for encoding and decoding

are explained below. Although limited in its application, this code has been

very effective in situations where excessive errors do not occur randomly in

a transmission medium, that is, the Hamming distance between the

transmitted and received words is at most 1, which can be corrected by this

code.

3.2.1 Encoding and Decoding.

 The encoding part of the algorithm is described in Table 3.2.1 (where y=yes

and n=no).

30

 Table 3.2.1 Encoding of Hamming (7,4) Code

Bit Location 1 2 3 4 5 6 7

Codeword c c1 c2 c3 c4 c5 c6 c7

Encoded Bit p1 p2 d1 p4 d2 d3 d4

 p1 y n y n y n y

 p2 n y y n n y y

 p4 n n n y y y y

 The Venn diagram for Table 3.2.1, shown in Figure 3.2.1, is a geometrical

representation of Table 3.2.1. It shows that the parity bit p1 covers the data

bits 1,3,5,7; the parity bit p2 covers the data bits 2,3,6,7; and the parity bit p4

covers the data bits 4,5,6,7. All these bits correspond to the entry ‘y’ in the

above table. The Venn diagram is a visual means of establishing a relation

between the parity bits and codeword. For smaller values of parity bits, it

works fine, but as their number increases, the diagram becomes complicated

and eventually becomes unintelligible even for m = n − k > 4.

31

 p1 Figure 3.2.1 Venn Diagram for

 d1 d2 4 data bits and 3 parity bits

 d4

 p2 d3 p4

Representing ‘y’ by 1 and ‘n’ by 0 in Table 4.2.1, the parity-check matrix H

and the code-generator matrix G are defined, respectively, as

 1 0 1 0 1 0 1 1 1 1 0 0 0 0

H= 0 1 1 0 0 1 1 G= 1 0 0 1 1 0 0

 0 0 0 1 1 1 1 0 1 0 1 0 1 0

 1 1 0 1 0 0 1

where H is a 3 × 7 matrix and G a 4 × 7 matrix. The entries in H represent the

above table, or Figure 3.2.1, while the entries in G correspond to the

following scheme: The first, second, and fourth rows in G represent the ‘y’

from p1,p2 and p4, each under d1,d2,d3,d4, respectively, while the third, fifth,

sixth, and seventh rows represent the identity matrix, since they are linearly

independent, and inserted into G in that manner as part of the algorithm.

Note that HGT = 0 mod2

3.2.2 Computation of Parity Bits.

 The information from Table 3.2.1, or equivalently from the above Venn

diagram, is used to compute the parity bits p1,p2,p4, given the data bits

d1,d2,d3,d4, by the formula

p1 = ¬ (d1 ⊕ d2 ⊕ d4),

32

 p2 = ¬ (d1 ⊕ d3 ⊕ d4),

p4 = ¬ (d2 ⊕ d3 ⊕ d4).

Then the codeword is c = {p1,p2,d1,p4,d2,d3,d4}. This is also one of the methods

for encoding and decoding of Hamming (7,4) code, as shown in Example 3.2.2.

Example 3.2.1.

Given the data bits [1010], the three parity bits by formula (3.2.2) are

p1 = ¬ (1 ⊕ 0 ⊕ 0) = 0, p2 = ¬ (1 ⊕ 1 ⊕ 0) = 1, p3 = ¬ (0 ⊕ 1 ⊕ 0)=0. The

codeword is c = [0110010].

Example 3.2.2.

Using the data from Example 3.2.1, the transmitted codeword is [0110010].

Suppose that the received word through a noisy channel is w = [0 1 0 0 0 1 0],

where an error has occurred in the third bit (shown in boldface). The receiver

uses formula (3.2.2) to check again the above parity bits p4 p2 p1 = 010 as

follows: p1 = ¬ (0 ⊕ 0 ⊕ 0) = 1, p2 = ¬ (0 ⊕ 1 ⊕ 0) = 0, p4 = ¬ (0 ⊕ 1 ⊕ 0) = 0.

Note that two of these computed parity bits, p1 p2, do not match with the

original parity bits. Next, the bit in error is computed by the syndrome

010 ⊕ 001 = (011)2 = (3)10. Hence, the third bit is in error, which is corrected by

flipping it or negating its value, and thus, the single-bit error is corrected.

Example 3.2.3

Construct (7,4) Hamming Code for the message [1000]. Conider even parity

Here 7 →indicates number of total bits in hamming code

Therefor it requires about 7-4=3 Parity bits.

33

During transmission it has 7 bit position

ie. Bit Position 1 2 3 4 5 6 7

 Encoded Bit p1 p2 d1 p4 d2 d3 d4

 p1 p2 1 p4 0 0 0

To define,

 p1 check → 1 , 3 , 5 , 7 = 100 = 1

 p2 check → 2, 3, 6, 7 =100 = 1

 p4 check → 4, 5, 6, 7 =000 = 0

Therefor the Ham ming Code = 1110000.

3.3(a)Syndrome and Error Detection

Let v = (v0,v1,………………,vn-1) be a codeword from a binary (n,k) linear block

code with generator matrix G and parity check matrix H.

Assume v is transmitted over a BSC, then binary received sequence.

r = (r0, r1, ……….........,rn-1) = v + e

 = (v0 ,v1,…………….,vn-1)+(e0,e1,………….,en-1)

 =(v0+e0+v1+e1,………………..,vn-1+en-1)

Where the binary vector e = (e0,e1,………………..,en-1) is the error pattern.

The “1’s” in e represent transmission errors ie,

 ri = 1 if ri ≠ vi

 0 if r = vi

34

and ei= 1 indicates that the ith position in r has an error.

After receiving r the decoder must determines if r contains errors (error

detection). And locate the errors in r (error correction).

Error detection is achived by computing the (n-k) tuple

 s = (s0,s1,………………..,sn-k-1) = rHT (Syndrome)

r is a codeword if and only if s = rHT = 0

 If s ≠ 0, r is not a codeword and transmission errors have been detected.

If s = 0, r is a codeword and no errors are detected. If r is a codeword other

than the actual transmitted codeword then an undetected error occurs. This

happens whenever the error pattern e is a non–zero codeword.

The syndrome s computed from the received vector r actually depends only on

the error pattern e and not on the transmitted code word v.

 s = r . HT = (v + e) HT = v . HT + e .HT Since v . HT = 0

 s = e . HT

Example 3.3.1

Consider a (7,4) linear code with parity – check matrix

 1 0 1 1 1 0 0

H = 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

Let r = (0 1 0 0 0 0 1) The syndrome of r is

s = (s0,s1,s2) = r. HT

35

 1 0 0

= (0 1 0 0 0 0 1) 0 1 0

 0 0 1

 1 1 0 = (1 1 1)≠ 0

 0 1 1

 1 1 1

 1 0 1

3.3(b) Syndrome and Error Correction

The syndrome s computed from the received vector r actually depends only

on the error pattern e, and not on the transmitted code word v.

 s = r. HT = (v + e)HT (since vHT = 0)

For error pattern e = (e0,e1,………………,en-1) and H given by

H = [In-k : pT]

 1 0 0………..0 p0,0 p1,0 …………… pk-1,0

 0 1 0………..0 p0,1 p1,1 …………… pk-1,1

= ……

 . . …………

 0 0 0 ……… 1 p0,n-k-1 p1,n-k-1 ………….. pk-1,n-k-1

The syndrome equation can be written as

sj = ej + en-kp0j + en-k+1p1j + ……………………. + en-1pk-1j 0 ≤ j ≤ n-k

This is a set of n-k equations in n unknowns e0 , e1 , ……,en-1.

36

The decoder must solve of these equations for the estimated error pattern e

Estimated codeword is

 v = r + e

There are 2k possible solutions to the syndrome equations and only one

solutions represents the true error pattern.

To minimize the probability of a decoding error. The most possible error

pattern that satisfies the above equation is chosen as the true error vector

Recall for BSC the maximum likelihood decoder choose v as the codeword v

that minimizes Hamming weight of the error pattern e.

Example 3.3.2

Let

 1 0 0 1 0 1 1

H= 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

Suppose v =(1 0 0 1 0 1 1) is transmitted and r = (1 0 0 1 0 0 1) is

received . To Find the syndrome

SL No: Bit in Error Bit in error vetor

(e) non zero bit

show error

Syndrome Vector

1 1st 1 0 0 0 0 0 0 1 0 0

2 2nd 0 1 0 0 0 0 0 0 1 0

3 3rd 0 0 1 0 0 0 0 0 0 1

37

s = e HT

 1 0 0

 0 1 0

s = (1 0 0 0 0 0 0) 0 0 1 = [(1+0+0+0+0+0+0) (0+0+0+0+0+0+0)

 1 1 0 (0+0+0+0+0+0+0)] = 1 0 0 [Using XOR]

 0 1 1

 1 1 1

 1 0 1

Repeat the same procedure using the other 6 error bit and thus we get the

above syndrome error.

The syndrome of r → s = v HT

 0 1 0

s = (1 0 0 1 0 0 1) 0 0 1

 1 1 0 = (1 1 1) ≠ 0 which implies there is an error

 0 1 1

 1 1 1

 1 0 1

 At syndrome vector (1 1 1) the non zero bit show error as (0 0 0 0 0 1 0)

4 4th 0 0 0 1 0 0 0 1 1 0

5 5th 0 0 0 0 1 0 0 0 1 1

6 6th 0 0 0 0 0 1 0 1 1 1

7 7th 0 0 0 0 0 0 1 1 0 1

38

v = e + r

 = (0 0 0 0 0 1 0) + (1 0 0 1 0 0 1)

 = (1 0 0 1 0 1 1) that gives the original code v

39

 Chapter – 4

 LDPC Codes

4.1 Introduction

 Low-density parity-check (LDPC) codes were invented in the 1960s by Gallager

[1962]. They were forgotten for 30 years until they were rediscovered by

MacKay and Neal [1996], and have now become a major area of research and

application. These codes are also known as Gallager codes. They are decoded

iteratively and have become successful in recovering the original codewords

transmitted over noisy communication channels, now a major area of research

and applications.

 Any linear block code that can be defined by its parity-check matrix .If this

matrix is sparse i.e. it contains only a small number of 1’s per row or column

then the code is called a low density parity check code.

4.2 Representations for LDPC codes

Basically there are two different possibilities to represent LDPC codes. Like all

linear block codes they can be described via matrices. The second possibility is

a graphical representation.

4.2.1 Matrix Representation

Lets look at an example for a low-density parity-check matrix first. The matrix

defined in equation (1) is a parity check matrix with dimension n×m for a (8,4)

code.

40

We can now define two numbers describing these matrix. wr for the number of

1’s in each row and wc for the columns. For a matrix to be called low-density

the two conditions wc <<n and wr <<m must be satisfied. In order to do this, the

parity check matrix should usually be very large, so the example matrix can’t

be really called low-density

H = 0 1 0 1 1 0 0 1

 1 1 1 0 0 1 0 0

 0 0 1 0 0 1 1 1 …………………(1)

 1 0 0 1 1 0 1 0

 f0 f1 f2 f3 p node

c0 c1 c2 c3 c4 c5 c6 c7

 c node

Figure 4.2.1: Tanner graph corresponding to the parity check matrix in

equation (1). The marked path c2 →f1 →c5 →f2 →c2 is an example for a short

cycle. Those should usually be avoided since they are bad for decoding

performance.

4.2.2 Graphical Representation

Tanner introduced an effective graphical representation for LDPC codes. Not

41

only provide these graphs a complete representation of the code, they also

help to describe the decoding algorithm as explained later on in this tutorial.

 Tanner graphs are bipartite graphs. That means that the nodes of the

graph are separated into two distinctive sets and edges are only connecting

nodes of two different types. The two types of nodes in a Tanner graph are

called variable nodes (p-nodes) and check nodes (c-nodes)

 Figure 4.1.1 is an example for such a Tanner graph and represents the

same code as the matrix in 1. The creation of such a graph is rather straight

forward. It consists of m check nodes (the number of parity bits) and n variable

nodes (the number of bits in a codeword). Check node fi is connected to

variable node cj if the element hij of H is a 1.

4.3 Tanner Graphs

A Tanner graph is a pictorial representation for the parity-check constraints . In

Tanner graphs each square represents a paritycheck bit and each circle

connected to a square represents a bit that participates in that parity check.

Thus, the nodes of the graph are separated into two distinct sets: c-nodes

(bottom nodes, circles) and p-nodes (top nodes, squares). For an (n,k) code,

the c-nodes ci, i = 1,... ,n, and the p-nodes pj, j = 1,... ,m, m = n − k, represent

the message bits (symbols) and the parity bits, respectively, for a transmitted

word ci (or received word denoted by wi).

 (4.3.1) A Tanner graph represents a linear code C if there exists a parity-

check matrix H for C associated with the Tanner graph. All variable c-nodes

connected to a particular p-node must sum, mod 2, to zero, which is same as

42

XOR-ing them to zero. This provides the constraints. Tanner graphs are

bipartite graphs, which means that nodes of the same type cannot be

connected, i.e., a c-node cannot be connected to another c-node; the same

rule applies to the p-nodes. For example, in Figure 4.3.1(a) or (b) the c-nodes

for a (6,3) code are denoted by c1,... ,c6 , and the parity-check bits denoted by

p1,p2,p3 are the p-nodes. Tanner graphs can also be presented in the vertical

form in which the c-nodes are the left nodes and p-nodes the right nodes, and

ci and pj start at the top and move downward (see §17.5). Sometimes a general

notation is used in which the c-nodes and p-nodes are denoted as x-nodes xi

and y-nodes yj, respectively.

The constraints for the example in Figure 4.3.1 are presented in two ways,

both implying the same constraints equations, but the representation (b) is

generally easier in the case when the number of c-nodes and p-nodes is large.

In this example the first parity-check bit p1 forces the sum of the bits c1,c2 and

c4 to be even, the second parity-check bit p2 forces the sum of the code bits

c1,c3 and c5 to be even, and the third parity-check bit p3 forces the sum of the

code bits c2,c3 and c6 to be even. Since the only even binary number is 0, these

constraints can be written as c1 ⊕c2 ⊕c4 = 0, c1 ⊕c3 ⊕c5 = 0, c2 ⊕c3 ⊕c6 = 0.

The only 8 codewords that satisfy these three parity-check constraints are

{000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000}. In this

code (Figure 4.3.1) the first three bits are the data bits and the last three bits

are then uniquely determined from the constraints; for example, if the data

bits are 010, then the codeword to be transmitted is 010101 as determined

from the above list of 8 codewords. The parity-check matrix H so obtained

must be transformed first into the form [−P T | In−k]; then the generator matrix

G is obtained by transforming it into the form [Ik | P].

43

 c1

 c5 c4

 p1 p2

 c3 c2

 p3

 c6

 (a)

c1 c2 c3 c4 c5 c6

 p1 p2 p3

(b)

 Figure 4.1.1 Tanner graph for the (6,3) code.

c

44

The graph in Figure 4.3.1 is said to be regular since there are the same number

of constraints at each parity-check bit, as seen by the same number of lines

connecting each square (p-node) to circles (c-nodes). If this number is not the

same at each p-node, then the graph is said to be irregular, The graph of

Figure 4.3.1 (a) or (b) is equivalent to the parity-check matrix

 1 1 0 1 0 0

 H = 1 0 1 0 1 0

 0 1 1 0 0 1

4.4Decoding LDPC codes

The algorithm used to decode LDPC codes was discovered independently

several times and as a matter of fact comes under different names. The most

common ones are the belief propagation algorithm , the message passing

algorithm and the sum-product algorithm. In order to explain this algorithm, a

very simple variant which works with hard decision, will be introduced first.

Later on the algorithm will be extended to work with soft decision which

generally leads to better decoding results. Only binary symmetric channels will

be considered.

4.4.1 Hard-Decision Decoding.

.The decoding scheme runs through the following steps:

Step 1. All c-nodes ci send a message to their p-nodes pj that a c-node ci has

only the information that the corresponding received i-th bit of the codeword

is wi; that is, for example, node c1 sends a message containing w1 (which is 1)

45

to p2 and p4, node c2 sends a message containing w2 (which is 1) to p1 and p2,

and so on.

 Step 2. Every parity node pj computes a response to every connected c-node.

The response message contains the bit that pj believes to be correct for the

connected c-node ci assuming that the other c-nodes connected to pj are

correct. For our example, since every p-node pj is connected to 4 c-nodes, a p-

node pj looks at the received message from 3 c-nodes and computes the bit

that the fourth c-node must be such that all the parity-check constraints are

satisfied.

Step 3. The c-nodes receive the message from the p-nodes and use this

additional information to decide if the original message received is correct. A

simple way to decide this is the majority vote. For our example it means that

each c-node has three sources of information concerning its bit: the original bit

received and two suggestions from the p-nodes.

Step 4. Go to Step 2.

46

Bibliography

 Algebraic and Stochastic Coding Theory, Dave. K . Kythe, Prem .K. Kythe,

CRC Press Taylor & Francis Group.

 Coding Theory The Essential, D.G. Hoffman, D.A. Linder, K.T. Phelps, C.A.

Rodger, J.R. Wall ,Auburn University, Auburn Alabama.

 Algebraic Coding Theory –Michael Toymill ,The University Of Puget

Sound, pdf

 I.N. Herstein, Topic in Algebra, Wiley Eastern Ltd, New Delhi, 1975.

 Hungerford, Algebra, Springer

 M. Artin, Algebra, Prentice- Hall of India, 1991

 N.Jacobson, Basic Algebra Vol. I, Hindustan Publishing Corporation

 P.B. Bhattacharya, S.K. Jain, S.R. Nagapaul, Basic Abstract Algebra 2nd

edition, Cambridge University Press, Indian Edition, 1997.

 World Wide Web.

