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                           Chapter 1 

                         Introduction 

 

1.1Passing Notes 

 Suppose you are sitting in your English Class and you are handed a note which 

reads ‘THIS CLPSS IS BORING’. You immediately notice the error in the note, 

and in addition to wondering how the author of the note ever got into college, 

you wonder what the actual intended message was. Very quickly you replace 

‘CLPSS’ with ‘CLASS’ and the meaning becomes clear. You have just applied 

some coding theory in your English class by detecting and correcting an error, 

but how did you do it? In order to detect and correct the error so quickly, you 

made three assumptions: 

1. That a correct word will be an English word. 

2. That the correct word contains five letters. 

3. That it is more likely that only one letter was incorrect as opposed to two or 

more. 

For now, we will ignore the assumption that the correct word should make 

sense in the context of entire message. Assumption 2 allowed us to make 

sense of the errant message, but it does have a weakness. In the above 

example ‘CLASS’ was the only English word we could make by changing one 

letter in ‘CLPSS’, but what if the received word was ‘CLASK’? Now by changing 

one letter we can make words like ‘FLASK’ and ‘CLASP’ as well as ’CLASS’. Using 

only our assumptions (1 and 2) we cannot justify choosing one word over 
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another, that is, in this case we cannot correct the error. In some cases our two 

assumptions may not even let us catch errors, for example if the received word 

was an English word, but the wrong one, say ‘GLASS’. 

The above situation can be thought of as a simple example of interpreting a 

message with a decoding algorithm. This is an absolutely crucial process in 

fields like telecommunication, electrical engineering, and computing where 

data is sent over a noisy “channel” where it may be altered before it is 

received. The main aims of Coding Theory are to detect and correct 

transmission errors as thoroughly and rapidly, and thus as efficiently as 

possible. Note that Coding Theory is NOT cryptography, that is it doesn’t 

protect data from malicious eyes. 

 The typical model of this system is as follows: 

 →                           →                          →                              →                                                                                                                                                        

 

    

 

                       →                                        →                                     →                                                       

 

 We will now begin a mathematical treatment of Coding Theory in order to 

understand the development of this fascinating (and useful!) field of study 
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1.2 BASIC ASSUMPTIONS 

We state some fundamental definitions and assumptions which we will apply 

throughout. 

1.2.1 Definition 

 In many cases, the information to be sent is transmitted by a sequence 

of zeros and ones. 

  We call a 0 or 1 a digit. 

  A word is a sequence of digits. 

  The length of a word is the number of digits in the word. Thus 

0110101 is a word of length seven. A word is transmitted by sending 

its digits, one after to other, across a binary channel.  

 The term ‘binary’ refers to the fact that only two digits 0 and 1 are 

used. Each digit is transmitted mechanically, electrically, magnetically 

or otherwise by one of two types of easily differentiated pulses.   

 A binary code is a set C of words. The code consisting of all words of 

length two is C= {00, 10, 01, 11} 

 A block code is a code having all its word of the same length; this 

number is called the length of a code. We will consider only block 

codes. So, for us the term code will always mean a binary block code.  

 The word that  belong to a given code C0, will be called code-words. 

We shall denote the number of code-words in a code C by │C│. 

 Self-complementing binary codes are those whose members 

complement on themselves. For a binary code to become a self-

complementing code, the following two conditions must be satisfied: 
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 The complement of a binary number should be obtained from that                      

number by replacing 1’s with 0’s and 0’s with 1’s  

 The sum of the binary number and its complement should be equal to 

decimal 9. 

 In weighted codes, each digit is assigned a specific weight according to its 

position. ... Examples:8421,2421,7421 are all weighted codes.  

 Non-weighted codes: The non-weighted codes are not 

positionally weighted.In other words codes that are not assigned with 

any weight to each digit position. 

 A linear code is a type of block code used in error detection and correction 

in transmitting bits or data on a communications channel. A linear code of 

length n transmits blocks containing n bits (symbols). 

We also need to make certain basic assumptions about the channel. These 

assumptions will necessarily shape the theory that we formulate. 

 The first assumption is that a code-word of length n consisting of 

0's and 1's is received as a word of length n consisting of 0's and 

1's, although not necessarily the same as the word that was sent. 

 The second is that there is no difficulty identifying the beginning 

of the first word transmitted. Thus, if we are using code-words of 

length 3 and receive 011011001 we know that the words 

received are in order, 011, 011, 001 . This assumption means, 

again using length 3, that the channel cannot deliver 01101 to 

the receiver, because a digit has been lost here. 

 The final assumption is that the noise is scattered randomly as 

opposed to being in clumps called bursts. That is, the probability 

of any one digit being affected in transmission is the same as that 

of any other digit and is not influenced by errors made in 
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neighbouring digits. This is not a very realistic assumption for 

many types of noise such as lightning or scratches on compact 

discs. We shall eventually consider this type of noise. 

 In a perfect, or noiseless, channel, the digit sent, 0 or 1, is always the 

digit received. If all channels were perfect, there would be no need for 

coding theory. But fortunately (or unfortunately, perhaps) no channel is 

perfect; every channel is noisy. Some channels are less noisy or more 

reliable, than others. 

 A binary channel is symmetric if 0 and 1 are transmitted with equal 

accuracy; that is the probability of receiving the correct digit is 

independent of which digit,0 or 1, is being transmitted 

      

1.3. CORRECTING AND DETECTING ERROR PATTERNS 

            We consider now the possibilities of correcting and detecting errors. In 

this section we intend to develop an intuitive understanding of the concepts 

involved in correcting and detecting errors, while a formal approach is adopted 

in later sections. 

          Suppose a word is received that is not a codeword. Clearly some error 

has occurred during the transmission process, so we have detected that an 

error (perhaps several errors) has occurred. If however a codeword is received, 

then perhaps no errors occurred during transmission, so we cannot detect any 

error. 

            The concept of correcting an error is more involved. As in the 

introduction when we were inclined to correct 'gub' to 'gun' rather than to 

'rat', we appeal to intuition to suggest that any received word should be 

corrected to a codeword that requires a few changes as possible. (In a later 
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section we show that the probability that such a codeword was sent is at least 

as great as the probability that any other codeword was sent). To consolidate 

these ideas, we shall discuss some particular codes. Notice that our 

assumption that no digits are lost or created in transmission precludes 

decoding 'gub' to 'fire truck'. 

 

Example 1.3.1 

 Let C1 = {00, 01, 10, 11} Every received word is a codeword and so C1 cannot 

detect any errors. Also C1 corrects no errors since every received word requires 

no changes to become codeword. 

 

 Example 1.3.2 

 Modify C1 by repeating each codeword three times. The new code is 

 

                                 C2 = {000000, 010101, 101010, 111111}. 

 

         This is an example of a repetition code. Suppose that 110101 is received. 

Since this is not a codeword we can detect that at least one error has occurred. 

The codeword 010101 can be formed by changing one digit, but all other 

codewords are formed by changing more than one digit. Therefore we expect 

that 010101 was the most likely codeword transmitted, so we correct 110101 

to 010101. (A codeword that can be formed from a word w with the least 

number of digits being changed is called a closest codeword; this idea is 

formalized later.) In fact if any of the codewords, c  element of C2, is 

transmitted and one error occurs during transmission, then the unique closest 

codeword to the received word is c; so any single error results in a word that 

we correct to the codeword that was transmitted. 
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1.4 . BCD Codes 

 

                 During the earliest period of development of this subject, the binary-

coded decimal (BCD) codes (or systems, as they were called then) were 

popular, and some of them have been used even in modern times These codes 

were based on the premise that, in addition to the number systems with base 

b, there are other special number systems that are hybrid in nature and are 

useful in computation, as computer inputs and outputs are mostly in decimal 

notation. 

 

 Four-Bit BCD Codes.  

                   These codes are defined as follows.  

a) 8421 code. A number system in base b requires a set of b distinct 

symbols for each digit. In computing the decimal (b = 10) and the binary 

(b = 2) number systems we need a representation or coding of the 

decimal digits in terms of binary symbols (called bits). This requires at 

least four bits, and any 10 out of the 16 possible permutations of these 

four bits represent the decimal digits. A systematic arrangement of 

these 10 combinations is given in Table (a), where d denotes the decimal 

digit. In the BCD code, the weights of the positions are the same as in 

the binary number system, so that each decimal digit is assigned a 

combination of bits, which is the same as the number represented by 

the four components regarded as the base 2 number. This particular 

code is also called direct binary coding. The nomenclature 8421 follows 
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from the weights assigned by the leftmost 1 in the successive bits in this 

representation. 

      The 8421 code uses four bits to represent each decimal digit. For 

example, the number 697 is represented by the 12-bit number 0110 

1001 0111, which has 3 four-bit decades. Although this number contains 

only 0s and 1s, it is not a true binary number because it does not follow 

the rules for the binary number system. In fact, by base conversion rules 

we have (697)10 = (1010111001)2. Thus, it is obvious that arithmetic 

operations with the 8421 code or any other BCD code would be very 

involved. However, as we shall soon see, it is quite easy for a computer 

program to convert to true binary, perform the required computations, 

and reconvert to the BCD code. 

    A digital computer can be regarded as an assembly of two-state 

devices as it computes with 0’s and 1’s of the binary system. On the 

other hand, we are accustomed to decimal numbers. Therefore, it is 

desirable to build a decimal computing system with two-state devices. 

This necessity has been responsible for the development of codes to 

encode decimal digits with binary bits. A minimum of four bits are 

needed. 

The following features are desirable in the choice of a code: 

(i) Ease in performing arithmetical operations;  

(ii)  Economy in storage space;  

(iii)  Economy in gating operations, error detection, and error correction; 

(iv)  Simplicity.  

b) Excess-3 code. This code represents a decimal number d in terms of the 

binary equivalent of the number d + 3. It is a self-complementing but not 
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a weighted code, and since it does follow the same number sequence as 

binary, it can be used with ease in arithmetical operations. 

c) 2421 code. This code is a self-complementing weighted code, commonly 

used in bit counting systems. Other weighted codes are: 5421 code, 

5311 code, and 7421 code, which are presented in Table (a). 

 

                                                           

 

  Table (a) : BCD Code 

 

D 

 

 8421 Excess -3 2421 5421 5311 7421 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

0000 

0001 

0010 

0011 

0100 

1011 

1100 

1101 

1110 

1111 

0000 

0001 

0010 

0011 

0100 

1000 

1001 

1010 

1011 

1100 

0000 

0001 

0011 

0100 

0101 

1000 

1001 

1010 

1011 

1100 

0000 

0111 

0110 

0101 

0100 

1010 

1001 

1000 

1111 

1110 
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                           Chapter -2 

              Digital Arithmetic 

 

In this chapter we describe constructive procedures in the form of error 

detecting, correcting, and decoding codes that are used for encoding messages 

being transmitted over noisy channels. The goal of such codes is to decode 

messages with no error rate or the least error rate. Most of these codes 

involve certain basic iterative procedures for simple error-correcting codes, 

which are described in detail in the following chapters. During the past half 

century, coding theory has shown phenomenal growth, with applications in 

areas such as communication systems, storage technology, compact disc 

players, and global positioning systems. Before we enter into these 

developments, we must review some basic digital logic and related rules that 

are useful for the development of the subject. 

2.1 Number Systems 

In addition to the decimal number system, we will discuss binary, ternary, 

octal, duodecimal, and hexadecimal systems.  

2.1.1 Decimal Numbers.  

  This system, also known as the base-10 system, uses ten symbols (units) 0 

through 9 and positional notation to represent real numbers in a systematic 

manner. The decimal (from Latin decimus, meaning ‘tenth’) system is also 

known as denary from Latin denarius which means the ‘unit of ten’. The real 

numbers are created from the units by assigning different weights to the 



 

17 
 

position of the symbol relative to the left or right of the decimal point, 

following this simple rule: Each position has a value that is ten times the value 

of the position to the right. This means that each positional weight is a multiple 

of ten and is expressible as an integral power of ten.  

The positional scheme can be expressed as follows: 

                   10p   ……..103 102101 100 . 10-1 10-2 10-3…………10-q 

                                                 ↑ 

                                      Decimal point 

 

Figure 2.1.1 Positional scheme of the decimal number system 

 

                             TABLE 2.1.1  Different Number Systems 

 

Decimal Binary Octal Duodecimal Hexadecimal 

0 0 0 0 0 

1 01 1 1 1 

2 10 2 2 2 

3 11 3 3 3 

4 100 4 4 4 

5 101 5 5 5 

6 110 6 6 6 

7 111 7 7 7 

8 1000 10 8 8 

9 1001 11 9 9 

10 1010 12 Α A 
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11 1011 13 Β B 

12 1100 14 10 C 

13 1101 15 11 D 

14 1110 16 12 E 

15 1111 17 13 F 

 

     Example 2.1.1. 

 The binary number 101111011010 is converted to octal as follows: 

Binary       101          111            011         010 

                    ↓            ↓                ↓           ↓ 

 Octal           5             7                  3             2 

Hence, (101111011010)2 = (5732)8. Note that the leading zeros are 

added to the remaining leftmost one or two digits without affecting the binary 

number in order to complete the leftmost 3-bit binary digit. The above process 

can easily be reversed. If an octal number is given, say (1534)8, then the 

equivalent 

            Binary number is found as follows: 

Octal                        1               5              3               4 

                                ↓              ↓             ↓            ↓  

Binary                   001            101          011         100 

Hence, (1534)8 = (001101011100)2 = (1101011100)2, after discarding the two 

leading zeros. 
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2.2 Boolean and Bitwise Operations 

The distinction between Boolean logical and bitwise operations is important. 

This section is devoted to these two topics, which play a significant role in the 

construction of different codes.  

2.2.1 Boolean Logical Operations.  

The truth tables for classical logic with only two values, ‘true’ and ‘false’, 

usually written T and F, or 1 and 0 in the case of the binary alphabet A = {0,1}, 

are given in Table 2.2.1 for most commonly used operators  AND, OR, XOR, 

XNOR, IF-THEN, AND THEN-IF. The operator NOT is defined by NOT 0=1, and 

NOT 1=0. The others are: 

Table 2.2.1. Boolean Logical Operators 

P Q AND OR XOR XNOR IF-THEN THEN-IF 

0 0 0 0 0 1 1 1 

0 1 0 1 1 0 1 0 

1 0 0 1 1 0 0 1 

1 1 1 1 0 1 1 1 

 

2.2.2 Bitwise Operations. 

 A bitwise operation is carried out by operators like NOT, AND, OR, AND XOR, 

which operate on binary numbers or one or two bit patterns at the level of 

their individual bits. These bitwise operators are defined as follows. 
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 NOT (¬). This operator, also known as the complement, is a unary operation 

that performs a logical negation at each bit. Thus, digits that were 0 become 1, 

and conversely.  

For example, 

 NOT 0110 = 1001. In certain programming languages, such as C or C++, the 

bitwise NOT is denoted by ∼ (tilde). Caution is needed not to confuse this 

bitwise operator with the corresponding logical operator ‘!’ (exclamation 

point), which treats the entire value as a single Boolean, i.e., it changes a true 

value to false, and conversely. Remember that the ‘logical NOT’ is not a bitwise 

operation.  

AND (& or ∧). This bitwise operation takes two binary representations of equal 

length and operates on each pair of corresponding bits. In each pair, if the first 

bit is 1 and the second bit is 1, then the result is 1; otherwise the result is 0. 

This operator, as in the C programming languages, is denoted by ‘&’ 

(ampersand), and must not be confused with the Boolean ‘logical AND’ which 

is denoted by ‘&&’ (two ampersands). An example is: 0101 & 0011 = 0001. The 

arithmetic operation ‘+’ and bitwise operation ‘& ’ are given side-by-side in 

Table 2.2.2. In general, the expressions x + y and x & y will denote the 

arithmetic and bitwise addition of x and y, respectively. 

OR (|). This operation takes two binary representations of equal length and 

produces another one of the same length by matching the corresponding bit, 

i.e., by matching the first of each, the second of each, and so on, and 

performing the logical inclusive OR operation on each pair of corresponding 

bits. Thus, if in each pair the first bit is 1 or the second bit is 1 or both, then the 

result is 1; otherwise it is 0. Thus, for example, 0101 OR 0011 = 0111. In C 
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programming languages the bitwise OR is denoted by | (pipe), and it must not 

be confused with the logical OR which is denoted by ∨ (from Latin vel) or by || 

(two pipes) 

XOR (⊕). This bitwise operator, known as the bitwise exclusive-or, takes two 

bit patterns of equal length and performs the logical XOR operation on each 

pair of the corresponding bits. If two bits are different, then the result is 1; but 

if they are the same, then the result is 0.  

Thus, for example, 0101 ⊕ 0011 = 0110. 

 In general, if x,y,z are any items, then 

(i) x ⊕ x = 0,  

(ii) x ⊕ 0 = x, 

(iii)  x ⊕ y = y ⊕ x, and  

(iv)  (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).  

In C programming languages, the bitwise XOR is denoted by ⊕. 

Table 2.2.2 Arithmetic and Bitwise Operations 

                 Bitwise Operations                            Arithmetic and Bitwise Operations 

P Q AND OR XOR ‖ p q + AND OR XOR 

0 0 0 0 0 ‖ 0 0 0 0 0 0 

0 1 0 0 1 ‖ 0 1 1 0 0 1 

1 0 0 0 1 ‖ 1 0 1 0 0 1 

1 1 1 1 0 ‖ 1 1 10 1 1 0 
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The bitwise XOR operation is the same as addition mod 2. The XOR function 

has the following properties, which hold for any bit values (or strings) a,b, and 

c: 

Property 1. 

a⊕a = 0;  

a⊕0 = a; a⊕1 =∼ a, where ∼ is bit complement;  

a ⊕ b = b ⊕ a;  

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;  

a ⊕ a ⊕ a = a, 

 and if a ⊕ b = c, then c ⊕ b = a and a ⊕ a = b.  

 

Property 2. 

 As a consequence of Property 1, given (a ⊕ b) and a, the value of the bit b is 

determined by a ⊕ b ⊕ a = b. Similarly, given (a ⊕ b) and b, the value of a is 

determined by b ⊕ a ⊕ b =a. These results extend to finitely many bits, say 

a,b,c,d, where given (a ⊕ b ⊕ c ⊕ d) and any 3 of the values, the missing 

value can be determined. In general, for the n bits a1,a2,... ,an, given a1 ⊕ a2⊕ · 

· · ⊕ an and any (n − 1) of the values, the missing value can be easily 

determined.  

 

Property 3. A string s of bits is called a symbol. A very useful formula is s ⊕ s = 

0 for any symbol s. 
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1.2.3 Applications.  

Some applications involving the above bitwise operations are as follows: 

             The bitwise AND operator is sometimes used to perform a bit mask 

operation, which is used either to isolate part of a string of bits or to determine 

whether a particular bit is 1 or 0. For example, let the given bit pattern be 

0011; then, to determine if the third bit is 1, a bitwise AND operation is 

performed on this bit pattern and another bit pattern containing 1 in the third 

bit. Thus, 0011 and 0010 = 0010. Since the result is non-zero, the third bit in 

the given bit pattern is definitely 1. The name ‘bit masking’ is analogous to use 

masking tape to mask or cover the parts that should not be changed. 

                The bitwise AND operator can be combined with the bitwise NOT to 

clear bits. Thus, consider the bit pattern 0110. In order to clear the second bit, 

i.e., to set it to 0, we apply the bitwise NOT to a arbitrary bit pattern that has 1 

as the second bit, followed by the bitwise AND to the given bit pattern and the 

result of the bitwise NOT operation. Thus, [NOT 0100] AND 0110 = 1011 AND 

0110 = 0010.  

              The bitwise OR is sometimes applied in situations where a set of bits is 

used as flags. The bits in a given binary number may each represent a distinct 

Boolean variable. By applying the bitwise OR to this number, together with a 

bit pattern containing 1, will yield a new number with that set of bits. As an 

example, given the binary number 0010, which can be regarded as a set of four 

flags, where the first, second, and fourth flags are not set (i.e., they each have 

value 0) while the third flag is the set (i.e., it has value 1), the first flag in this 

given binary number can be set by applying the bitwise OR to another value 

with first flag set, say 1000. Thus, 0010 OR 1000 = 1010. This technique is used 
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to conserve memory in programs that deal with a large number of Boolean 

values.  

              The bitwise XOR operation is used in assembly language programs as a 

short-cut to set the value of a register to zero, since operating XOR on a value 

against itself always yields zero. In many architectures this operation requires 

fewer CPU clock cycles than the sequence of operations that are needed to 

load a zero value and save it to the registers. The bitwise xor is also used to 

toggle flags in a set of bits. For example, given a bit pattern 0010, the first and 

the third bits may be toggled simultaneously by a bitwise XOR with another bit 

pattern with 1 in the first and the third bits, say 1010. Thus, 0010 ⊕ 1010 = 

1000.  

 

2.3  Residues, Residue Classes, and Congruences 

For each pair of integers n and b, b > 0, there exists a pair of integers q and r 

such that        n = bq + r, 0 ≤ r < b. 

The quantity r is called the residue of n modulo b and is denoted (in Gaussian 

notation) by b│n . For example 5│15=0,  5│17=2. Further if n≥0 then  b│n=r is 

the remainder, and q is the quotient when n is divided by b. The quantities q 

and r are unique (proof of uniqueness follows from the division algorithm) 

  Consider the class in which a comparison is made of the remainders when 

each of the two integers n and m are divided by b. If the remainders are the 

same then b│(n-m) and we say that the two numbers n and m have the same 

residue modulo b, so that n and m differ by an integral multiple of b. In this 

case we say that n and m are congruent modulo b and write n ≡ m (mod b). 
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The symbol ≡ is an equivalence relation (with respect to a set); that is, it is a 

relation R between the elements of a set such that if α and β are arbitrary 

elements, then either α stands in a relation R to β (written as α R β), or it does 

not. 

 

 Moreover, R has the following properties: 

(i) α R α (reflexive); 

(ii) if α R β, then β R α (symmetric); and 

(iii)  if α R β and β R ϒ, then α R ϒ (transitivity) 

        The equality between numbers is an equivalent relation for either α = β, or 

α ≠β; α = α; if α = β, then β = α; and if α = β and β = ϒ, then α = ϒ. Other 

examples are congruency of triangles, similarity of triangles, parallelism of 

lines, children having the same mother, or books by the same author. The 

congruency n ≡ m (mod b) possesses the above three properties. In fact, we 

have 

Theorem 2.3.1. 

 Congruence modulo a fixed number b is an equivalence relation.  

     Proof. There are three cases 

(i) b│(n-n) so that n≡n (mod b) 

(ii) If b│(n-m), then b(m-n); thus if  n≡m (mod b), then m≡n (mod b) 

(iii) If b(n-m) and b(m-l), then n-m≡kb, m-l ≡jb where k and j are 

integers. Thus, n − l = (k + j)b, i.e., if n ≡ m (mod b) and m ≡ l (mod 

b), then n ≡ l (mod b).   
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Lemma 2.3.2: 

 If a│bc and (a,b)=1 then a│c 

Proof. 

 If (a,b) = 1, then there exist integers x and y such that ax+by = 1. Multiply both 

sides of the equality by c. Then acx+bcy = c, and a divides both ac and bc. 

Hence a divides c. 

 

Theorem 2.3.3. 

 The following results are true: 

 (i) If m ≡ n (mod b) and u ≡ v mod (b), then the following congruencies hold:  

   (a) m + u ≡ n + v (mod b),  

   (b) mu ≡ nv (mod b),  

   (c) k m ≡ k n (mod b) for every integer k; 

 (ii) if k m ≡ k n (mod b) and (k,b) = d, then m ≡ n (mod
𝑏

𝑑
), where (k,n) = d means 

d is the g.c.d. of k and b.  

(iii) If f(x) is a polynomial with integral coefficients and m ≡ n (mod b), then 

f(m)≡ f(n) (mod b). 
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                                              Chapter -3 

                      Hamming Codes   

          

3.1 Error Correcting Codes 

Error detection and error correction are integral parts of many high-reliability 

and high-performance computer and transmission/storage devices. In data 

storage systems, memory caches are used to improve system reliability. The 

cache is generally placed inside the controller between the host interface and 

the disk array. Any reliable cache memory design must include errorcorrection 

code (ECC) functions to safeguard the loss of data. Similarly, ECC is an 

important design aspect of many communication applications, such as satellite 

receivers. The significance of ECC lies in performance and cost efficiency by 

correcting any error and avoiding repeated retransmission of data. When a 

message or data is transmitted through a channel, the data received depends 

on the properties of the resulting errors, which may be caused by the 

characteristics of the channel and the system.  

There are three major categories of errors that are encountered:  

1. Random errors. These are bit errors that are independent of one another; 

they are generally caused by the noise in the channel. They are simply isolated 

erroneous bits in a message or data, caused by thermal (voltage) noise in 

communication channels.  
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2. Burst errors. These are bit errors that occur sequentially in time and groups. 

Sometimes defects in the digital storage media cause these kinds of errors. 

They are difficult to correct by some codes, although block codes can handle 

this kind of errors effectively.  

3. Impulse errors. These are large blocks of data that are full of errors; they are 

typically caused by lightning strikes or major system failures. Impulse errors 

generally cause catastrophic failures in a communication system; they are so 

severe that they are not even recognized or detected by forward error 

correction. 

In general, all simple error correction codes are not sufficiently efficient to 

detect and correct burst and impulse errors, and they fail to reconstruct the 

message in the case of catastrophic errors. In the current state of 

advancements in this field, the Reed-Solomon codes were designed specifically 

to correct random and burst errors, and detect the presence of catastrophic 

errors by examining the message. If the number of errors per data is small, 

these errors can be totally corrected using the Reed-Solomon codes. These 

codes are therefore very useful in system design since they flag the 

unrecoverable message at the decoder. We will first discuss simple error 

detection and error correction codes, and slowly build up the analysis and 

description to finally reach the state-of-the-art aspects of modern coding 

theory. 

3.1.1 Binary Linear Hamming Codes.  

These codes were discovered by R. W. Hamming and M. J. G. Golay. In 

particular, the Hamming code refers to the (7,4) code introduced by 

Hamming in 1950 to provide a single error correction and double error-
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detection (SEC-DED) code for errors introduced on a noisy communication 

channel. It was used to reduce the computer resonance and time that was 

wasted when the message was corrupted without the receiver realizing it 

and lending to the failure of communication. In general, all binary Hamming 

codes of a given length are equivalent. The dimension of a binary linear (n,k) 

code of length n = 2k −1 is n − k, where k is the number of data bits in the 

code, and its distance is d = 3, thus making it an exactly single-error 

correcting code. 

3.2 Hamming (7,4) Code 

This code has 4 data bits and 3 parity bits, hence the name. The parity bits 

are denoted by 2r, r = 0,1,2, i.e., the bit numbers 1,2,4. Thus, using the 

exponent form, the three parity bits, denoted by p1,p2,p4, are added to every 

four data bits of message, denoted by d1,d2,d3,d4, forming a codeword           

c = {p1,p2,d1,p4,d2,d3,d4} that is used to detect all single-bit and two bit errors 

and correct only a single-bit error. The algorithms for encoding and decoding 

are explained below. Although limited in its application, this code has been 

very effective in situations where excessive errors do not occur randomly in 

a transmission medium, that is, the Hamming distance between the 

transmitted and received words is at most 1, which can be corrected by this 

code. 

3.2.1 Encoding and Decoding. 

 The encoding part of the algorithm is described in Table 3.2.1 (where y=yes 

and n=no). 
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          Table 3.2.1 Encoding of Hamming (7,4) Code 

 

Bit Location                1       2       3       4       5       6       7 

Codeword c                c1      c2        c3         c4          c5       c6         c7       

Encoded Bit                p1      p2      d1       p4         d2           d3         d4 

         p1                        y        n      y       n       y         n       y    

         p2                        n       y       y       n       n        y        y 

         p4                                     n       n      n       y       y       y          y 

 

    The Venn diagram for Table 3.2.1, shown in Figure 3.2.1, is a geometrical 

representation of Table 3.2.1. It shows that the parity bit p1 covers the data 

bits 1,3,5,7; the parity bit p2 covers the data bits 2,3,6,7; and the parity bit p4 

covers the data bits 4,5,6,7. All these bits correspond to the entry ‘y’ in the 

above table. The Venn diagram is a visual means of establishing a relation 

between the parity bits and codeword. For smaller values of parity bits, it 

works fine, but as their number increases, the diagram becomes complicated 

and eventually becomes unintelligible even for m = n − k > 4. 
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                                         p1                              Figure 3.2.1 Venn Diagram for  

                          d1                                      d2                                         4 data bits and 3 parity bits 

                                        d4 

                       p2             d3               p4 

 

Representing ‘y’ by 1 and ‘n’ by 0 in Table 4.2.1, the parity-check matrix H 

and the code-generator matrix G are defined, respectively, as   

             1   0   1   0   1   0   1                      1   1   1   0   0   0   0 

H=        0   1   1   0   0   1   1           G=      1   0   0   1   1   0   0 

             0   0   0   1   1   1   1                      0   1   0   1   0   1   0 

                                                                     1   1   0   1   0   0   1 

where H is a 3 × 7 matrix and G a 4 × 7 matrix. The entries in H represent the 

above table, or Figure 3.2.1, while the entries in G correspond to the 

following scheme: The first, second, and fourth rows in G represent the ‘y’ 

from p1,p2 and p4, each under d1,d2,d3,d4, respectively, while the third, fifth, 

sixth, and seventh rows represent the identity matrix, since they are linearly 

independent, and inserted into G in that manner as part of the algorithm. 

Note that HGT = 0 mod2  

3.2.2 Computation of Parity Bits. 

 The information from Table 3.2.1, or equivalently from the above Venn 

diagram, is used to compute the parity bits p1,p2,p4, given the data bits 

d1,d2,d3,d4, by the formula 

p1 = ¬ (d1 ⊕ d2 ⊕ d4), 
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 p2 = ¬ (d1 ⊕ d3 ⊕ d4),  

p4 = ¬ (d2 ⊕ d3 ⊕ d4). 

Then the codeword is c = {p1,p2,d1,p4,d2,d3,d4}. This is also one of the methods 

for encoding and decoding of Hamming (7,4) code, as shown in Example 3.2.2.  

Example 3.2.1.  

Given the data bits [1010], the three parity bits by formula (3.2.2) are  

p1 = ¬ (1 ⊕ 0 ⊕ 0) = 0, p2 = ¬ (1 ⊕ 1 ⊕ 0) = 1, p3 = ¬ (0 ⊕ 1 ⊕ 0)=0. The 

codeword is c = [0110010]. 

Example 3.2.2.  

Using the data from Example 3.2.1, the transmitted codeword is [0110010]. 

Suppose that the received word through a noisy channel is w = [0 1 0 0 0 1 0], 

where an error has occurred in the third bit (shown in boldface). The receiver 

uses formula (3.2.2) to check again the above parity bits p4 p2 p1 = 010 as 

follows: p1 = ¬ (0 ⊕ 0 ⊕ 0) = 1, p2 = ¬ (0 ⊕ 1 ⊕ 0) = 0, p4 = ¬ (0 ⊕ 1 ⊕ 0) = 0. 

Note that two of these computed parity bits, p1 p2, do not match with the 

original parity bits. Next, the bit in error is computed by the syndrome          

010 ⊕ 001 = (011)2 = (3)10. Hence, the third bit is in error, which is corrected by 

flipping it or negating its value, and thus, the single-bit error is corrected. 

Example 3.2.3 

Construct (7,4) Hamming Code for the message [1000]. Conider even parity 

Here 7 →indicates number of total bits in hamming code 

Therefor it requires  about 7-4=3 Parity bits. 
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During transmission it has 7 bit position 

ie.         Bit Position            1     2     3     4     5     6     7     

         Encoded Bit           p1    p2     d1     p4     d2     d3     d4 

                                         p1    p2     1    p4        0    0     0  

To define, 

                       p1      check → 1 , 3 , 5 , 7  = 100 = 1 

                       p2    check → 2,  3,   6,  7  =100 = 1 

                      p4     check → 4,  5,  6,  7   =000 = 0 

Therefor the Ham ming Code = 1110000. 

3.3(a)Syndrome and Error Detection 

Let v = (v0,v1,………………,vn-1) be a codeword from a binary (n,k) linear block 

code with generator matrix G and parity check matrix H. 

Assume v is transmitted over a BSC, then binary received sequence. 

r = (r0, r1, ……….........,rn-1)  =   v + e 

                                              = (v0 ,v1,…………….,vn-1)+(e0,e1,………….,en-1) 

                                                     =(v0+e0+v1+e1,………………..,vn-1+en-1) 

Where the binary vector     e = (e0,e1,………………..,en-1) is the error pattern. 

The “1’s” in e represent transmission errors ie, 

                      ri =         1    if  ri ≠ vi 

                                     0   if   r = vi 
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and ei= 1 indicates that the ith position in r has an error. 

After receiving r the decoder must determines if r contains errors (error 

detection). And locate the errors in r (error correction). 

Error detection is achived by computing the (n-k) tuple 

                s = (s0,s1,………………..,sn-k-1) = rHT   ( Syndrome ) 

r is a codeword if and only if s = rHT = 0 

 If s ≠ 0, r is not a codeword and transmission errors have been detected. 

If s = 0,  r is a codeword and no errors are detected. If r is a codeword other 

than the actual transmitted codeword then an undetected error occurs. This 

happens whenever the error pattern e is a non–zero codeword. 

The syndrome s computed from the received vector r actually depends only on 

the error pattern e and not on the transmitted code word v. 

                       s = r . HT = ( v + e) HT = v . HT + e .HT   Since v . HT = 0 

                       s = e . HT 

Example 3.3.1  

Consider a (7,4) linear code with parity – check matrix 

               1    0    1    1     1    0    0 

H =         0    1    0    1    1     1    0 

               0    0    1    0    1     1    1 

Let  r = (0 1 0 0 0 0 1)  The syndrome of r is  

s = (s0,s1,s2) = r. HT  
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                                       1     0    0 

= (0  1  0  0  0  0  1)     0     1    0 

                                       0    0     1 

                                       1    1     0         = (1  1  1)≠ 0 

                                       0    1     1 

                                       1    1     1 

                                       1    0     1 

  

3.3(b) Syndrome and Error Correction 

The syndrome s computed from the received vector r actually depends only 

on the error pattern e, and not on the transmitted code word v. 

                 s = r. HT = ( v + e )HT  (since vHT = 0)  

For error pattern e = (e0,e1,………………,en-1) and H given by  

H = [In-k  :   pT]  

         1     0     0………..0           p0,0        p1,0             ……………      pk-1,0   

         0     1     0………..0           p0,1            p1,1        ……………        pk-1,1  

=       .      .       .......……           

          .      .       ………… 

        0     0     0 ………  1           p0,n-k-1     p1,n-k-1     …………..      pk-1,n-k-1 

  

The syndrome equation can be written as 

sj = ej + en-kp0j + en-k+1p1j + ……………………. + en-1pk-1j   0 ≤ j ≤ n-k 

This is a set of n-k equations in n unknowns e0 , e1 , ……,en-1. 
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The decoder must solve of these equations for the estimated error pattern e  

Estimated codeword is 

                                    v = r + e 

There are 2k possible solutions to the syndrome equations and only one 

solutions represents the true error pattern. 

To minimize the probability of a decoding error. The most possible error 

pattern that satisfies the above equation is chosen as the true error vector 

Recall for BSC the maximum likelihood decoder choose v as the codeword v 

that minimizes Hamming weight of the error pattern e.  

Example 3.3.2 

Let   

         1     0     0     1     0     1     1 

H=    0     1     0     1     1     1     0 

         0     0     1     0     1     1     1 

 

Suppose v =( 1  0  0  1  0  1  1 ) is transmitted and r = ( 1  0  0  1  0  0  1 ) is 

received . To Find the syndrome 

SL No: Bit in Error Bit in error vetor 

(e) non zero bit 

show error 

Syndrome Vector 

1 1st 1  0  0  0  0  0  0 1 0 0  

2 2nd 0  1  0  0  0  0  0 0 1 0 

3 3rd 0  0  1  0  0  0  0 0 0 1 
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s = e HT 

                                         1     0   0 

                                         0    1    0 

s = ( 1 0 0 0 0 0 0 )         0    0    1    = [ (1+0+0+0+0+0+0)  (0+0+0+0+0+0+0)     

                                         1    1    0         (0+0+0+0+0+0+0)] = 1 0 0 [Using XOR] 

                                          0   1    1 

                                          1   1    1 

                                          1   0    1 

Repeat the same procedure using the other 6 error bit and thus we get the 

above syndrome error. 

 

The syndrome of  r     →  s = v HT  

                                

                                         0    1    0 

s = ( 1 0 0 1 0 0 1 )         0    0    1         

                                         1    1    0      = ( 1 1 1)  ≠ 0 which implies there is an error    

                                          0   1    1 

                                          1   1    1 

                                          1   0    1 

 At syndrome vector ( 1 1 1)  the non zero bit show error as ( 0 0 0 0 0  1 0) 

4 4th 0  0  0  1  0  0  0 1 1 0 

5 5th 0  0  0  0  1  0  0 0 1 1 

6 6th 0  0  0  0  0  1  0 1 1 1 

7 7th 0  0  0  0  0  0  1 1 0 1 
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v = e + r 

   = (0 0 0 0 0 1 0) + ( 1 0 0 1 0 0 1) 

   = (1 0 0 1 0 1 1) that gives the original code v 
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                            Chapter – 4   

                          LDPC Codes 

4.1 Introduction 

 Low-density parity-check (LDPC) codes were invented in the 1960s by Gallager 

[1962]. They were forgotten for 30 years until they were rediscovered by 

MacKay and Neal [1996], and have now become a major area of research and 

application. These codes are also known as Gallager codes. They are decoded 

iteratively and have become successful in recovering the original codewords 

transmitted over noisy communication channels, now a major area of research 

and applications. 

 Any linear block code that can be defined by its parity-check matrix .If this 

matrix is sparse i.e. it contains only a small number of 1’s per row or column 

then the code is called a low density parity check code. 

4.2 Representations for LDPC codes 

Basically there are two different possibilities to represent LDPC codes. Like all 

linear block codes they can be described via matrices. The second possibility is 

a graphical representation. 

4.2.1 Matrix Representation 

Lets look at an example for a low-density parity-check matrix first. The matrix 

defined in equation (1) is a parity check matrix with dimension n×m for a (8,4) 

code.  
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We can now define two numbers describing these matrix. wr for the number of 

1’s in each row and wc for the columns. For a matrix to be called low-density 

the two conditions wc <<n and wr <<m must be satisfied. In order to do this, the 

parity check matrix should usually be very large, so the example matrix can’t 

be really called low-density 

 

H =             0  1  0  1  1  0  0  1                                    

                   1  1  1  0  0  1  0  0 

                   0  0  1  0  0  1  1  1               …………………(1)                            

                   1  0  0  1  1  0  1  0 

 

             f0                       f1            f2   f3                p node 

                                                                      

                                                                                                                                                                                

c0                    c1               c2                            c3                           c4                               c5                       c6            c7          

                                                                                                                                c node 

Figure 4.2.1: Tanner graph corresponding to the parity check matrix in 

equation (1). The marked path c2 →f1 →c5 →f2 →c2 is an example for a short 

cycle. Those should usually be avoided since they are bad for decoding 

performance. 

4.2.2 Graphical Representation                                                                                     

Tanner introduced an effective graphical representation for LDPC codes. Not 
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only provide these graphs a complete representation of the code, they also 

help to describe the decoding algorithm as explained later on in this tutorial.            

           Tanner graphs are bipartite graphs. That means that the nodes of the 

graph are separated into two distinctive sets and edges are only connecting 

nodes of two different types. The two types of nodes in a Tanner graph are 

called variable nodes (p-nodes) and check nodes (c-nodes) 

          Figure 4.1.1 is an example for such a Tanner graph and represents the 

same code as the matrix in 1. The creation of such a graph is rather straight 

forward. It consists of m check nodes (the number of parity bits) and n variable 

nodes (the number of bits in a codeword). Check node fi is connected to 

variable node cj if the element hij of H is a 1. 

 

4.3 Tanner Graphs 

A Tanner graph is a pictorial representation for the parity-check constraints . In 

Tanner graphs each square represents a paritycheck bit and each circle 

connected to a square represents a bit that participates in that parity check. 

Thus, the nodes of the graph are separated into two distinct sets: c-nodes 

(bottom nodes, circles) and p-nodes (top nodes, squares). For an (n,k) code, 

the c-nodes ci, i = 1,... ,n, and the p-nodes pj, j = 1,... ,m, m = n − k, represent 

the message bits (symbols) and the parity bits, respectively, for a transmitted 

word ci (or received word denoted by wi).  

         (4.3.1) A Tanner graph represents a linear code C if there exists a parity-

check matrix H for C associated with the Tanner graph. All variable c-nodes 

connected to a particular p-node must sum, mod 2, to zero, which is same as 
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XOR-ing them to zero. This provides the constraints. Tanner graphs are 

bipartite graphs, which means that nodes of the same type cannot be 

connected, i.e., a c-node cannot be connected to another c-node; the same 

rule applies to the p-nodes. For example, in Figure 4.3.1(a) or (b) the c-nodes 

for a (6,3) code are denoted by c1,... ,c6 , and the parity-check bits denoted by 

p1,p2,p3 are the p-nodes. Tanner graphs can also be presented in the vertical 

form in which the c-nodes are the left nodes and p-nodes the right nodes, and 

ci and pj start at the top and move downward (see §17.5). Sometimes a general 

notation is used in which the c-nodes and p-nodes are denoted as x-nodes xi 

and y-nodes yj, respectively. 

The constraints for the example in Figure 4.3.1 are presented in two ways, 

both implying the same constraints equations, but the representation (b) is 

generally easier in the case when the number of c-nodes and p-nodes is large. 

In this example the first parity-check bit p1 forces the sum of the bits c1,c2 and 

c4 to be even, the second parity-check bit p2 forces the sum of the code bits 

c1,c3 and c5 to be even, and the third parity-check bit p3 forces the sum of the 

code bits c2,c3 and c6 to be even. Since the only even binary number is 0, these 

constraints can be written as c1 ⊕c2 ⊕c4 = 0, c1 ⊕c3 ⊕c5 = 0, c2 ⊕c3 ⊕c6 = 0. 

The only 8 codewords that satisfy these three parity-check constraints are 

{000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000}. In this 

code (Figure 4.3.1) the first three bits are the data bits and the last three bits 

are then uniquely determined from the constraints; for example, if the data 

bits are 010, then the codeword to be transmitted is 010101 as determined 

from the above list of 8 codewords.  The parity-check matrix H so obtained 

must be transformed first into the form [−P T | In−k]; then the generator matrix 

G is obtained by transforming it into the form [Ik | P].  



 

43 
 

                                                          c1 

                 c5                                                                                                                                c4 

                                  p1              p2 

                                                                                                   

                           c3                                                                                                   c2 

                                                                  p3  

                                                                     c6 

                    (a) 

                                                         

 

c1                      c2                       c3                       c4                         c5                       c6 

 

 

 

             p1                                                   p2                                                    p3                                                                                       

(b)                                                                                                                                                                       

                               Figure 4.1.1 Tanner graph for the (6,3) code. 

c 
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The graph in Figure 4.3.1 is said to be regular since there are the same number 

of constraints at each parity-check bit, as seen by the same number of lines 

connecting each square (p-node) to circles (c-nodes). If this number is not the 

same at each p-node, then the graph is said to be irregular,  The graph of 

Figure 4.3.1 (a) or (b) is equivalent to the parity-check matrix 

                          1  1  0  1  0  0 

          H  =         1  0  1  0  1  0 

                    0  1  1  0  0  1 

 

4.4Decoding LDPC codes 

The algorithm used to decode LDPC codes was discovered independently 

several times and as a matter of fact comes under different names. The most 

common ones are the belief propagation algorithm , the message passing 

algorithm and the sum-product algorithm.  In order to explain this algorithm, a 

very simple variant which works with hard decision, will be introduced first. 

Later on the algorithm will be extended to work with soft decision which 

generally leads to better decoding results. Only binary symmetric channels will 

be considered. 

4.4.1 Hard-Decision Decoding. 

.The decoding scheme runs through the following steps:  

Step 1. All c-nodes ci send a message to their p-nodes pj that a c-node ci has 

only the information that the corresponding received i-th bit of the codeword 

is wi; that is, for example, node c1 sends a message containing w1 (which is 1) 
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to p2 and p4, node c2 sends a message containing w2 (which is 1) to p1 and p2, 

and so on. 

 Step 2. Every parity node pj computes a response to every connected c-node. 

The response message contains the bit that pj believes to be correct for the 

connected c-node ci assuming that the other c-nodes connected to pj are 

correct. For our example, since every p-node pj is connected to 4 c-nodes, a p-

node pj looks at the received message from 3 c-nodes and computes the bit 

that the fourth c-node must be such that all the parity-check constraints are 

satisfied.   

Step 3. The c-nodes receive the message from the p-nodes and use this 

additional information to decide if the original message received is correct. A 

simple way to decide this is the majority vote. For our example it means that 

each c-node has three sources of information concerning its bit: the original bit 

received and two suggestions from the p-nodes.  

Step 4. Go to Step 2. 

 

 

 

 

 

 



 

46 
 

Bibliography 

 Algebraic and Stochastic Coding Theory, Dave. K . Kythe, Prem .K. Kythe, 

CRC Press Taylor & Francis Group. 

 Coding Theory The Essential, D.G. Hoffman, D.A. Linder, K.T. Phelps, C.A. 

Rodger, J.R. Wall ,Auburn University, Auburn Alabama. 

 Algebraic Coding Theory –Michael Toymill ,The University Of Puget 

Sound, pdf 

 I.N. Herstein, Topic in Algebra, Wiley Eastern Ltd, New Delhi, 1975. 

 Hungerford, Algebra, Springer 

 M. Artin, Algebra, Prentice- Hall of India, 1991 

 N.Jacobson, Basic Algebra Vol. I, Hindustan Publishing Corporation 

 P.B. Bhattacharya, S.K. Jain, S.R. Nagapaul, Basic Abstract Algebra 2nd 

edition, Cambridge University Press, Indian Edition, 1997. 

 World Wide Web. 

 

 

 

 

 

 

 

 

 

  


