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INTRODUCTION 

 

                    Graceful labeling is one of the best known labeling methods of 

graphs. Graceful labeling was originally introduced in 1967 by Rosa . The term 

“graceful” was introduced by Golomb  in 1972. A graceful labeling  of a graph  

G = (V,E) with n vertices and m edges is a one-to-one mapping Ψ of the vertex 

set V(G) into the set {0, 1, 2, . . . ,m} with this property: if we define, for any edge  

e = (u,v) ∈   E(G), the value *(e) = |Ψ(u) − Ψ(v)|, then * is a one-to-one 

mapping of the set E(G) onto the set {1, 2, . . . ,m}. A graph is called graceful if it 

has a graceful labeling.  

               Rosa proved that if G is graceful and if all vertices of G are of even 

degrees, then |E(G)| ≡ 0 or 3(mod4). Although most graphs are not graceful, 

graphs that have some sort of regularity of structure are graceful . Many 

variations of graceful labeling  have  been introduced in recent years by 

researchers.  All cycles Cn are graceful if and only if n ≡ 0 or 3(mod4). All paths 

Pn, wheels Wn and complete bipartite graphs Km,n are graceful. The complete 

graphs Kn are graceful only if n ≤ 4. It has been conjectured that all trees are 

graceful. Although this conjecture has been the focus of more than 200 papers, it 

is still an open problem.  

              Although more than 400 papers have been published on the subject of 

graph labeling, there are few particular techniques to be used by authors. The 

graceful labeling problem is to find out whether a given graph is graceful, and if 

it is graceful, how to label the vertices. The common approach in proving the 
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gracefulness of special classes of graphs is to either provide formulas for 

gracefully labeling the given graph, or construct desired labeling from combining 

the famous classes of graceful graphs. 

                In the Chapter 1 we deals with the basic definitions of graph theory. In 

Chapter 2, we present the formal definition of graceful labeling of a graph and 

present the gracefulness of some graph classes as well as some general results 

about graceful labeling of graphs. In  Chapter 3, we focus on results towards the 

Graceful Tree Conjecture, presenting different approaches to tackle the 

conjecture. In chapter 4, We deals with  the mathematical programming 

technique is presented to model and solve the graceful labeling problem for 

different classes of graphs. And finally in Chapter 5 we discuss the applications 

of graceful labeling of some graphs. 
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CHAPTER 1 

SOME BASIC CONCEPTS OF GRAPH 

THEORY 

 

Definition 1.1 :     A graph is an ordered triple G = (V(G) ,E(G) ,𝐼𝐺 ) where V(G) 

is an non empty set , E(G) is a set disjoint from V(G) ,and   𝐼𝐺 is an incidence 

relation that associates  with each element of E(G)  an unordered pair of elements 

(same or distinct ) of V(G) .Elements of V(G) are called the vertices of G and 

elements of E(G) are called the edges of G .V(G) and E(G) are the vertex set and 

edge set of G respectively .If , for the edge e of G , 𝐼𝐺 (e) ={u,v} , we write  

𝐼𝐺(e)=uv 

Example 1.1:    If V(G) = {v1, v2, v3, v4, v5}, E(G) = { e1, e2, e3, e4, e5, e6} 

and IG is given by IG(e1) = {v1, v5}, IG (e2) = {v2, v3}, IG (e3) = {v2, v4}, 

IG(e4) = {v2, v5}, IG (e5) = {v2,v5}, IG(e6) = {v3, v3}, then (V(G), E(G), IG ) 

is a graph. 

The diagrammatic representation of the graph is given below. 

                               

                                                            Figure 1.1 
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Definition 1.2 :    If  𝐼𝐺 (e) ={u,v} , then the vertices u and v are called the end 

vertices or ends of the edge e .  Each edge is said to join its ends; in this case, we 

say that e is incident with each one of its ends. Also, the vertices u and v are then 

incident with e. A set of two or more edges of a graph G is called a set of multiple 

or parallel edges if they have the same pair of distinct ends. If e is an edge with 

end vertices u and v, we write e =  uv .  An edge for which the two ends are the 

same is called a loop at the common vertex. A vertex u is a neighbor of v in G,  if 

uv is an edge of G, and u≠ v. The set of all neighbors of v is the open 

neighborhood of v or the neighbor set of v , and is denoted by N(v) ; the set N 

[v]=N(v) ∪ { v}  is the closed neighborhood of v in G.  When G needs to be 

made explicit, these open and closed neighborhoods are denoted by 𝑁𝐺(v) and  

𝑁𝐺[v] ,respectively. Vertices u and v are adjacent to each other in G if and only if 

there is an edge of G with u and v as its ends. Two distinct edges e and f are said 

to be adjacent if and only if they have a common end vertex. A graph is simple if 

it has no loops and no parallel edges.  

Example 1.2:    In the graph of Fig. 1.1, edge e3 =  v2v4, edges e4 and e5 form 

multiple edges, e6 is a loop at v3; N(v2) = {v3, v4, v5} N(v3) = {v2},N[v2] = {v2, v3, 

v4, v5} and N[v2] = N(v2) {v2} Further, v2 and v5 are adjacent vertices and e3 and 

e4 are adjacent edges 

Definition 1.3:   A graph is called finite if both V(G) and E(G) are finite. A graph 

that is not finite is called an infinite graph. 

Definition 1.4:   A graph is said to be labeled if its n vertices are distinguished 

from one another by labels such as v1, v2, . . . , vn  
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Figure 1.2 

Definition 1.5:    A simple graph G is said to be complete if every pair of distinct 

vertices of G are adjacent in G and is denoted by 𝐾𝑛 . 

                

Figure 1.3 

 

Definition 1.6:     A  graph  is  trivial if its vertex set is a singleton and it contains 

no edges. A graph is bipartite if its vertex set can be partitioned into two 

nonempty subsets X and Y such that each edge of G has one end in X and the 

other in Y. The pair (X,Y)  is called a bipartition of the bipartite graph. The 

bipartite graph G with bipartition (X,Y)  is denoted by G(X,Y) . A  bipartite 

graph  G(X,Y)  is complete  if  each vertex of X is adjacent to all the vertices of 

Y .If G(X,Y) is complete with ∣X∣ = p and ∣Y∣ =q then G(X,Y) is denoted 

by  𝐾𝑝,𝑞. A complete bipartite graph of the form 𝐾1,𝑞 is called a star graph. 
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Figure 1.4 

 

Definition 1.7:      A k-partite graph is a graph whose vertices  can be partitioned 

into k disjoint sets so that no two vertices within the same set are adjacent.  

                                                     

Figure 1.5 

 

Definition 1.8:        A complete k-partite graph is a k-partite graph in which there 

is an edge between every pair of vertices from different independent sets. 

https://mathworld.wolfram.com/Graph.html
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Figure 1.6 

 

Definition 1.9:       A graph H is called a  subgraph of G  if  V(H) ⊆ V(G) ,   

E(H) ⊆ E(G)  and IH is  the  restriction  of IG to  E(H) . If  H is a subgraph of G, 

then G is said to be a supergraph of H. A subgraph H of a graph G is a proper 

subgraph of G if either V(H) ≠ V(G) or E(H) ≠  E(G)  (Hence, when  G is given, 

for any subgraph H of G, the incidence function is already determined so that H 

can be specified by its vertex and edge sets.) A subgraphH of G is said to be an 

induced subgraph  of  G if each edge of G having its ends in V(H) is also an edge 

of H. A subgraph H of G is a spanning subgraph of G if V(H)=V(G). The 

induced subgraph of G with vertex set S ⊆ V(G) is called the subgraph of G 

induced by S and is denoted by G[S].  Let E be a subset of E and let S denote the 

subset of V  consisting of all the end vertices in G of edges in E.  Then the graph 

(S, E ,IG /E) is the subgraph of G induced by the edge set E’ of G. It is denoted 

by G[E] .  Let u and v be vertices of a graph G. By G + uv , we mean the graph 

obtained by adding a new edge uv to G . 

Definition 1.10:    Let G be a graph and v ∈ V. The number of edges incident at v 

in G is called the degree of the vertex v in G and is denoted by 𝑑𝐺(v), or simply  
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d(v).  A loop at v is to be counted twice in computing the degree of v. The 

minimum (respectively, maximum) of the degrees of the vertices of a graph G is 

denoted by  (G) or (respectively, ∆ (G) or ∆). A graph G is called k-regular if 

every vertex of G has degree k. A graph is said to be regular if it is k-regular for 

some nonnegative integer k. In particular, a 3-regular graph is called a cubic 

graph. 

 Definition 1.11:       A vertex of degree 0 is an isolated vertex of G. A vertex of 

degree 1 is called a pendant vertex of G, and the unique edge of G incident to 

such a vertex of G is a pendant edge of G. A sequence formed by the degrees of 

the vertices of G, when the vertices are taken in the same order, is called a degree 

sequence of G. 

 Definition 1.12:   A walk in a graph G is an alternating sequence                                      

W : 𝑣0𝑒1𝑣1𝑒2… . . 𝑒𝑝𝑣𝑝 of vertices and edges beginning and ending with vertices 

in which 𝑣𝑖−1 and  𝑣𝑖  𝑎re the ends of 𝑒𝑖; 𝑣0 the origin and  𝑣𝑝is the terminus of 

W. The walk W is  said to join 𝑣0  and 𝑣𝑝 ; it is also referred to as a 𝑣0 − 𝑣𝑝  

walk.  The walk is closed if 𝑣0 = 𝑣𝑝 and is open otherwise. A walk is called a 

trail if all the edges appearing in the walk are distinct. It is called a path if all the 

vertices are distinct. Thus, a path in G is automatically a trail in G. When writing 

a path, we usually omit the edges. A cycle is a closed trail in which the vertices 

are all distinct. The length of a walk is the number of edges in it. A walk of 

length 0 consists of just a single vertex . The distance between two vertices u and 

v of a graph G is the length of the shortest u-v path and is denoted by d(u, v). 

Example 1.3:    In the graph of Fig.1.5, v5e7v1e1v2e4v4e5v1e7v5e9v6  is  a  walk  

but not a trail (as edge e7 is repeated) v1e1v2e2v3e3v2e1v1 is a closed walk; 

v1e1v2e4v4e5v1e7v5 is a trail; v6e8v1e1v2e2v3 is a path and v1e1v2e4v4e6v5e7v1 is a 

cycle. Also, v6v1v2v3 is a path, and v1v2v4v5v6v1 is a cycle in this graph. Very 

often a cycle is enclosed by ordinary parentheses. 
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Figure 1.7 

 

Definition 1.13:    A cycle of length k is denoted by 𝐶𝑘 . Further, 𝑃𝑘 denotes a 

path on k vertices. In particular,  𝐶3 is often referred to as a triangle, 𝐶4  as a 

square, and 𝐶5 as a pentagon . 

Definition 1.14:     Let G be a graph. Two vertices u and v of G are said to be 

connected if there is a u-v path in G: The relation “connected” is an equivalence 

relation on V(G) . 𝑉1, 𝑉2, … . 𝑉be the equivalence classes. The subgraphs 

G[𝑉1], 𝐺[𝑉2], … , 𝐺[𝑉], are called the components of G. If  = 1, the graph G is 

connected; otherwise, the graph G is  disconnected with   2 components. 

 Definition 1.15:     An Euler trail in a graph G is a spanning trail in G that 

contains all the edges of G. An Euler tour of G is a closed Euler trail of G. G is 

called Eulerian (Fig. 1.6) if G has an Euler tour. 

                                       

Figure 1.8 
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Definition 1.16:      A connected graph without cycles is defined as a tree. A 

graph without just cycles is called an acyclic graph or a forest. So each 

component of a forest is a tree. A forest may consist of a single tree 

                                           

Figure 1.9 

 

Definitions 1.17    Let G be a connected graph. 

1. The diameter of G is defined as 

max{d(u,v) / u, v ∈   V(G)} 

     and is denoted by diam(G). 

2. If v is a vertex of G, its eccentricity e(v) is defined  by  

e(v) = max{d(v, u) / u ∈   V(G)}. 

3. The radius r(G) of G is the minimum eccentricity of G; that is,                      

r(G) =  min{e(v)/ v ∈   V(G)}. 

    Note that diam(G) = max{e(v) / v ∈ . V(G)}.    

4. A vertex v of G is called a central vertex if e(v) = r(G). The set of central             

     vertices of G is  called the center of G 
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CHAPTER 2 

INTRODUCTION TO GRACEFUL GRAPHS 

 

Graph Labeling 

 Graph labeling, also known as a valuation of a graph, is  a map that carries 

graph elements onto numbers (usually the positive or nonnegative integers) called 

labels  that  meet some properties depending on the type of labeling that we are 

considering. The most common choices for the domain are the set of vertices 

alone (vertex labelings), or edges alone (edge labelings), or the set of edges and 

vertices together (total labelings) 

Graceful Labeling 

 

A graceful labeling of a graph G = (V,E) with m = V vertices and n = E edges 

is a one-to-one mapping Ψ of the vertex set V(G) into the set { 0,1,2, … ,n } with 

the following property: 

If we define, for any edge e = {u,v} ∈   E(G) , the value Ψ*(e) =  Ψ(u) - Ψ(v)  

then Ψ* is a one-to-one mapping of the set E(G) onto the set { 1,2, … ,n}. A 

graph is called graceful if it has a graceful labeling. 

Although it has been studied for 50 years, not many general results are known 

about graceful labeling. Most of the results are about asserting the gracefulness of 

a graph class since it suffices to show a graceful labeling for each graph in the 

class. On the other hand, results on non-gracefulness of a graph rely basically on 

a necessary condition only valid for Eulerian graphs or on trying to label the 
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graph gracefully until reaching a contradiction, which is not very effective in 

most of the cases. 

 

                  

 

Figure 2.1: Graceful labeling of P3 and K1,3 

 

Proposition 2.1 :  The path graph Pn is graceful for all n ≥ 1. 

Proof   Take a path graph Pn and let V (Pn) = {u0, u1, . . . , un−1} be the set  of 

vertices  such  that  uk−1uk ∈ E(Pn) for  0 < k < n.  Since  Pn has  m = n − 1 edges, 

we must label the vertices with numbers from 0 to n − 1 so that every number in             

[1 ,  n − 1] appears as an edge label. We start with edge label n − 1 since there is 

only one way to get an absolute difference equal to n − 1, which is having a 

vertex with label 0 adjacent to a vertex with label n − 1. Thus, let us try labeling 

u0 with 0 and u1 with n − 1. Next, let us try to get an edge label with value n − 2. 

There are only two  possible ways to get n – 2  as an absolute difference:   

n − 2 = |(n − 2) − 0| = |(n − 1) − 1| 

Since u0 has no more unlabeled adjacent vertices, we can only get the edge label    

n − 2 by labeling u2 with 1. Going on with this strategy, our resulting labeling will 

be as follows: 

(uk) = {  

 𝑘

2
                           ;  𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

N – (k + 1)

2
              ; 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑
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Now, to show that  is indeed a graceful labeling of Pn, it suffices to show that 

the edge label 1 appears, which is expected to appear on the last edge un−2un−1. If 

n is even, then  (un−1) = n/2 and  (un−2) = (n-1)/2. Hence,  

*( un−1un−2) = n/2 – (n-1)/2 = 1 

 Therefore, the proposition holds. 

 

Proposition 2.2:      If G = (V,E) is graceful, then there exists a partition              

P = (A,B) of V such that the number of edges with one end in A and the other in B 

is  
𝑚

2
 . 

 

Proof   Let G = (V,E) be a graph with a graceful labeling  and consider the 

partition P = (A,B) of V such that A = u  V : (u)  0 (mod 2). Since there 

are 
m

2
  odd values between 1 and m, and an odd difference is only possible by 

subtracting an even value from an odd one, the number of edges connecting two 

vertices with different parities must be exactly   
m

2
 . 

 

Theorem 2.3:     Let G be an Eulerian graph. If m  1, 2 (mod 4), then G is not 

graceful. 

Proof     Suppose G = (V, E) is a graceful Eulerian graph. Let  : V  [0, m] be 

a graceful labeling of G and C = (u0, u1, . . . , um-1, um = u0) be an Eulerian cycle 

of  G. Taking the sum of the edge labels of C modulo 2, we have: 

∑  ∗𝑚
𝑖=1 (ui-1ui) = ∑ 𝑚

𝑖=1  ( ui-1) - ( ui) 

                       ∑ 𝑚
𝑖=1 (ui-1) - ( ui) 

                                                       0 (mod 2)                                       (2.1) 

And, since C is an Eulerian cycle, i.e., the cycle C goes through each edge 

exactly once, and f is a graceful labeling of G, we have: 
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                            ∑  ∗ (e)eE   = ∑ k = 𝑚
𝑘=1  

m(m+1)

2
     0(mod 2)                   (2.2) 

Thus, we must have m  0, 3 (mod 4) in order to satisfy equation (2.2). 

 

 

Theorem 2.4:       Every graph is an induced subgraph of a graceful graph. 

 

Proof        Given a graph G = (V, E), let us construct a graph H from G such that 

H is graceful and G is an induced subgraph of H. Consider a vertex labeling               

 : V  [0, k] injective for some k   m  such that the edge labeling * : E  N 

is also injective, and there exist u, v  V with (u) = 0 and (v) = k. Let x1, x2, . 

. . , xr be the set of missing edge labels. Without loss of generality, x1, x2, . . . , xs 

are not vertex labels and xs+1, . . . , xr are vertex labels. For each xi, 1   i  s, add 

a vertex wi with label xi and add an edge connecting wi to u so that *(uwi) = xi. 

For each xi, s + 1   i  r, add a vertex wi with label k + xi and connect wi to u 

and v so that *(uwi) = k + xi and *(vwi) = xi. Note that the last step might have 

introduced new missing edge labels by creating vertex labels with values greater 

than k. However, these new missing edge labels are not vertex labels. So, for 

each new missing edge label y, add a new vertex zy with label y and connect zy to 

u so that     f(uzy) = y. The resulting graph H is graceful and it contains G as an 

induced subgraph. 
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Figure 2.2: Constructing a graceful graph from C5                                                                                                     

 

Theorem 2.4  says that a graph G being non-graceful does not matter for graphs for 

which G is an induced subgraph. It also says that we can always construct a 

graceful graph from any graph. 

Other Graceful Graphs 

                         

               In this section, we are going to prove the gracefulness of some graph 

classes. Most of the results asserting the gracefulness of a graph class are given 

by explicit graceful labelings. For the non-gracefulness of a graph class, there are 

only a few tools for that. Basically, we only have Proposition 2.2 and theorem 

2.3. We can also prove by trying to label the graph and finding a contradiction. 

 

Proposition 2.5:      The complete graph Kn is graceful if, and only if, n ≤ 4 

Proof      Let us first introduce a property of graceful labelings. Given a graph 

with a graceful labeling, if we swap every vertex label k with m − k, the resulting 

labeling is also graceful since the edge labels will not have changed: the end 

vertices of an edge with labels a and b become m − a  and  m − b, and                        

|a − b| = |(m − a) − (m − b)|. This is called the complementarity property. 
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Now, for Kn with n > 4, as before, we must have a vertex with label 0 adjacent to 

a vertex labeled m to get the edge label m.   But,  in this case,  every vertex is 

adjacent to every other vertex. Thus, we can label any vertex with 0 and any other 

one with m without loss of generality. To get the edge label m − 1, we have two 

options: m − 1 = |(m − 1) − 0| = |m − 1|. However, the complementarity property 

allows us to choose either one without loss of generality. Choosing to label a vertex 

with 1, we get edge labels 1 and m − 1. Now we need to get the edge label         

m − 2 = |(m − 2) − 0| = |(m − 1) − 1| = |m − 2|. We can not label a vertex with  m − 1 

or 2 because it would create a duplicate edge label. Hence, our only option is to 

label a vertex with m − 2, obtaining edge labels 2, m − 3 and m – 2. 

 Since m − 3 has already appeared on an edge, the next edge label we must obtain 

is m − 4 = |(m − 4) − 0| = |(m − 3) − 1| = |(m − 2) − 2| = |(m − 1) − 3| = |m − 4|. Again, we 

only have one option without creating duplicate edge labels, which is to label a 

vertex with 4, obtaining edge labels 3, 4, m − 6 and m − 4. At this point, we have 

labeled five vertices. However, for K5, we would have m − 6 = 4 as a duplicate edge 

label. For n ≥ 6, the next edge label to get is m − 5. But, all the five possible ways 

to get m − 5 lead to a duplicate edge label. Therefore, there is no way to get label 

m − 5 on an edge and the proposition holds. 

 

Proposition 2.6:    The cycle graph Cn is graceful if, and only if, n  0, 3(mod 4). 

 

Proof         Cycle graphs are Eulerian graphs. Therefore, by the parity condition, 

if n  1, 2 (mod 4), then Cn is not graceful. Otherwise, let us call                                

V (Cn) = u0, u1,  . . . , un-1 } such that  ukuk+1  E(Cn)  for 0    k   n - 1 and      

un = u0. 

If n   0 (mod 4), then label the vertices according to the following formula: 
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(ui) = 

{
 
 

 
 

i

2
                               ;            𝑖 =  0, 2, 4, . . . , n −  2

n –  
i−1

2
                   ;             𝑖 = 1, 3 ,5, . . . ,

n

2
  −  1

        n –  
i−1

2
  −  1         ;     𝑖 =  

n

2
 +  1,

n

2
 +  3, . . . , n −  1 

       

 

If n  3 (mod 4) , then label V(Cn) as follows :  

 

(ui)  = 

{
 
 

 
 

i

2
                              ;              𝑖 =  0, 2, 4, . . . , n −  2

 n –  
i−1

2
                   ;             𝑖 = 1, 3 ,5, . . . ,

n+1

2
  −  1

             n –  
i−1

2
  −  1         ;     𝑖 =  

n+1

2
 +  1,

n+1

2
 +  3, . . . , n −  2 

       

 

 

Proposition 2.7 :       The wheel graph Wp is graceful for all p ≥ 3. 

Proof     Let V (Wp) = {u0, u1, . . . , up−1, v} be the set of vertices where v is the 

vertex joined with the cycle and consider the following two cases. 

If p ≡ 0 (mod 2), then the following formula gives a graceful labeling: 

                                          (v) = 0 

(ui)   = {

 2𝑝                        ;      𝑖 = 0                                                  
  2                         ;      𝑖 = 𝑝 − 1                                         
    𝑖                          ;      𝑖 = 1, 3, 5, … , 𝑝 − 3                         
    2𝑝 − 𝑖 − 1         ;       𝑖 =  2, 4, 6, . . ., p −  2                      

 

   2.     If p ≡ 1 (mod 2), then the following formula gives a graceful labeling : 

                                             (v) = 0 

(ui)   =  {

 2𝑝                           ;          𝑖 = 0                                                  
  2                              ;          𝑖 = 1                                                   
  𝑝 +  𝑖                       ;         𝑖 = 2, 4, 6, … , 𝑝 − 1                         
 𝑝 + 1 − 𝑖                ;          𝑖 =  3, 5, 7, . . ., p −  2                   
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Proposition 2.8:         All caterpillar trees  are graceful 

Proof        A caterpillar is a tree in which the removal of all leaves results in a 

path graph. 

Draw the caterpillar tree as a planar bipartite representation and label it as shown  

in  Figure 2.3. It is easy to  check  that  such drawing  scheme  is  always  possible. 

                                      

Figure 2.3: Graceful labeling of caterpillar tree. 

Note that a path graph Pn is also a caterpillar tree and the labeling scheme given 

by Proposition 2.8, when applied to a path graph, yields the same labeling 

constructed before. 

Proposition 2.9 :      The complete bipartite graph Kp,q is graceful for all p, q ≥ 1. 

Proof        Let G = (A, B, E) be a bipartite graph with a = |A| and b = |B|. Assign 

the vertices from A with numbers 0, 1, . . . , a − 1, and assign the vertices from B 

with numbers a, 2a, . . . , ba. 

We can generalize the concept of bipartite graph to multipartite graph and, in 

a similar fashion, we have the complete multipartite graph. It was proven the 
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following proposition regrarding the gracefulness of complete multipartite 

graph. 

Proposition 2.10 :      The complete multipartite graphs Kp,q, K1,p,q, K2,p,q, and 

K1,1,p,q  are graceful. 

Proof        The graceful labelings are given in Figure 2.4. 

       

 

 

Figure 2.4 

               

                Furthermore, Beutner conjectured that these graphs are the only 

complete multipartite graphs which are graceful, and showed computationally that 

it is valid for all complete multipartite graphs up to 23 vertices. 
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CHAPTER 3 

TREES 

                 The Graceful Tree Conjecture remains unsolved to these days and there 

have been a few different approaches researchers have been trying to prove the 

conjecture. In this section, we  have some  results on the gracefulness of trees and the 

different ways in which the conjecture has been tackled. 

Conjecture 3.1  (Graceful Tree Conjecture)  :      Every tree is graceful. 

              As shown in Chapter 2, paths and caterpillars are graceful. A first 

approach would be to extend the definition of caterpillars to new families of trees, 

i.e., look at the class of trees in which the removal of all leaves results in a 

caterpillar tree—the lobsters—, and so on. However, even the lobster trees have 

not been characterized yet. Bermond conjectured in 1979 that all lobsters are 

graceful. This chapter presents others approaches which have shown to be more 

interesting. 

Lemma 3.1:      Let T  be a tree with a graceful labeling   and let u ∈ V (T ) the 

vertex with   (u) = 0.   If  T ‘   is  the  tree  obtained  from  T  by  adding  a  new  

vertex  v  only adjacent to u, then T ‘ is graceful. 

Proof    If m is the number of edges of tree T , then the vertex labeling  ‘ 

such that  ‘  V(T) =  and  ‘ (v) = m + 1 is a graceful labeling of T ‘ . 

Corollary 3.1.1 :    If w ∈ V (T ) has label m, then adding a new vertex only 

adjacent to w also results in a graceful tree. 
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Proof          Just consider the complementary graceful labeling of f . 

Corollary 3.1.2 :       If u ∈ V (T ) has label 0 (or m) and H is a caterpillar 

tree, then adding an edge between u and a vertex of H with maximum 

eccentricity also results in a graceful tree. 

Proof                Apply  iteratively  Lemma 3.1  giving  preference to adding leaves 

first  whenever it is possible. Also note that the corollary is valid for any graceful 

graph G as long as u ∈ V (G) has label 0 (or m). 

Lemma 3.1 allows us to obtain new graceful graphs from smaller ones by adding a 

vertex. Then, it is reasonable to ask if this could be used to prove the Graceful 

Tree Conjecture, i.e., somehow show that for any tree, there is a finite sequence of 

graceful trees starting from a single vertex such that each tree is the previous one in 

the sequence plus a vertex, and the last tree of the sequence is the target tree itself. 

One sufficient condition to the existence of such sequence is if every tree admits a 

graceful labeling in which the label 0 can be assigned to any vertex. In the general 

context, such graphs are called 0-rotatable graceful graphs. However, it is not 

true that every tree is 0-rotatable graceful . 

Let T be a tree and uv ∈ E(T ). We denote by Tu,v the subtree of T containing v  

after the removal of the edge uv. Precisely, if S = {w ∈ V (T ) : v is on the uw-path }, 

then    Tu,v = T [S]. 

Lemma 3.2:    Let T  be a tree with a graceful labeling  and let u ∈ V (T ) be a 

vertex adjacent to u1  and u2.  Consider T  ‘ = T − (V (Tu,u1 ) ∪ V (Tu,u2 )) and let  

v ∈ V (T ‘), v  u 
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(a) If u1  u2 and  (u1) +  (u2) =  (u) +  (v), then the tree obtained by 

a  disjoint  union  of  T J,  Tu,u1   and  Tu,u2 ,  and  connecting  v  to  u1  and  u2  

is graceful with the same graceful labeling . 

(b) If u1 = u2 and 2 (u1) =  (u) +  (v), then the tree obtained by a 

disjoint union of T J and Tu,u1 , and connecting v to u1 is graceful 

with the same graceful labeling  . 

Proof              It suffices to show that the edge labels of uu1 and uu2 are the same 

as of vu1 and vu2. 

(a)  | (u1) −      (u)| = |     (u) +  (v) −  (u2) −  (u)| = | (v) −(u2)| 

       | (u2) −  (u)| = | (u) +  (v) −   (u1) −   (u)| = |  (v) − (u1)|  

(b) |(u1) − (u)| =  
(𝑢)+(𝑣)

2
 - (u)  =  

(𝑢)−(𝑣)

2
   

          | (u1) −   (v)  =   
(𝑢)+(𝑣)

2
 -  (v)  =   

(𝑣)−(𝑢)

2
   

 

Figure 3.1: Transfer of subtrees from u to v. 

 

This operation is called a transfer and we mostly do transfers of leaves from one 

vertex to another. For the remaining of this section, for a graceful tree, we no longer 



28 
 

distinguish the vertex label from the vertex itself since in a tree every number from 

[0, n − 1] must appear as a vertex label. 

As an example, take the star graph K1,m. We can transfer some leaves, which  is 

connected to vertex 0, to the vertex m (see Figure 3.2). For an example, we can 

transfer k and m − k from 0 to m since k + (m − k) = 0 + m. As said before, the 

subtree being transferred is usually a leaf and we denote a sequence of transfers of 

leaves adjacent to u to v as u → v. Although the notation is not precise, the context 

will make clear how many and which leaves are being transferred. 

 

                 (a)                                                       (b) 

Figure 3.2: Transfer of leaves from m to 0 (m → 0 transfer) 

 

Proposition 3.3 :   All trees with diameter 4 are graceful. 

Proof. Consider the following types of transfers. 

       A u → v  transfer is of type 1 if the leaves being transferred are k, k + 1, . . . , k + s. 

This type of transfer can be realized if u + v = k + (k + s). We use this type of 

transfer when we want to leave an odd number of vertices connected to u. 

      A u → v transfer is of type 2 if the leaves being transferred are  k, k + 1, . . . , k + s 

and  l, l + 1, . . . , l + s with k + s < l. This type of transfer can be realized if                    
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u + v = k + (l + s). We use this type of transfer when we want to leave an even 

number of vertices connected to u. 

           By Lemma 3.1, it is sufficient to show that every tree T of diameter 4 with 

central vertex (which is unique in T ) of odd degree has a graceful labeling with the 

central vertex having the maximum label. This is true because, in a tree of diameter 

4, any subtree rooted at one of the children of central vertex is a caterpillar tree. 

          Let w be the central vertex of T , x be the number of vertices adjacent to w 

with even degree, and y be the number of vertices adjacent to w with odd degree 

greater than 1. Let  d(w) =  2k + 1 and consider the tree of Figure 3.2 b. We can 

obtain T from that tree by the following sequence of transfers: 

0  →  m − 1 → 1 → m − 2 → 2 → m − 3 →   · · · 

 where the first x transfers (or x − 1 if y = 0) are of type 1 and the next y − 1 

transfers (if y > 1) are of type 2. 

           In order to verify that this sequence works, let us analyse the first transfer. 

Suppose {u1, . . . , ux}  is the set of vertices adjacent to w with even degree. Starting 

with the tree on Figure 3.2b, the central Vertex  w  is the one with label m. The first 

transfer is  0 → m−1. Then, u1 is the vertex 0 and we want to leave d(u1)−1 vertices 

attached to it. Initially, we have the vertices k + 1, k + 2, . . . , m − k − 2, m − k – 1 

adjacent to 0. Since  0 + (m − 1) = (k + 1) + (m − k − 2), it is possible to leave 

d(u1) − 1 vertices by doing a type 1 transfer of a continuous sequence of vertices 

to m − 1. Going on with an analogous analysis, it can be seen that this sequence 

works.  

 

Proposition 3.4:           All trees with diameter 5 are graceful. 
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               The proof of Proposition 3.4  also uses the transfers operations used in the 

proof of Proposition 3.3. 
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CHAPTER 4 

MATHEMATICAL PROGRAMMING IN 

GRACEFUL LABELING OF GRAPHS 

             

  It has been shown that complete graph Kn, complete bipartite graph Km,n,  path 

Pn, wheel graph Wn, cycle Cn are graceful. The graceful labeling problem is to 

find out whether a given graph is graceful, and if it is graceful, how to label the 

vertices. The common way to prove the gracefulness of special classes of graphs 

is to provide formulas for gracefully labeling the given graph. The process of 

gracefully labeling a particular graph G is a very tedious and difficult task for 

many classes of graphs. In this chapter, a new approach based on the 

mathematical programming technique is presented to model and solve the 

graceful labeling problem for different classes of graphs. 

 

4.1 Mathematical programming model of graceful labeling 

problem 

 

In modeling the graceful labeling problem, some of our variables cannot take the 

same value and should be formulated by inequality constraints. For example, 

assume that we have the below constraints: 

                                 x1  x2, x1,x2 ≥ 0.                                                             (4.1) 

By introducing a new variable w as a nonzero variable, we have 

                         x1 −x2 −w = 0, x1,x2 ≥ 0, w  0.                                              (4.2) 

 

Denote the vertices of the graph G = (V,E) by v1,v2, . . . ,vn, respectively. Now 

consider the  decision variables of the model are defined as follows: 
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(i)    xj: the label of vertex vj ; 

(ii)   xij: the label of an edge (vi,vj) and a nonzero variable that connects vertices  

       vi and vj, where xij  0 implies that the labels of adjacent vertices vi and vj    

       are distinct; 

(iii)  sijkl : a nonzero variable, where sijkl  0 implies that the labels of edges (vi,vj)  

       and  (vk,vl) are not equal; 

(iv)  wijkl : a nonzero variable, where wijkl  0 implies that the value of an edge  

       label (vi,vj) is unequal to the negative value of an edge label (vk,vl); 

(v)   yij : a nonzero variable, where yij  0 implies that the labels of nonadjacent  

      vertices vi and vj are distinct. 

The following model has a feasible solution if G is graceful. 

 

Problem 4.1  

(1)   xi −xj = xij for all i, j, such that (vi,vj) ∈  E(G); 

(2)   xij −xkl = sijkl for all i, j,k, l,(i, j)  (k, l), such that (vi,vj ), (vk,vl) ∈  E(G); 

(3)   xij +xkl = wijkl for all i, j,k, l,(i, j)  (k, l), such that (vi,vj ), (vk,vl) ∈  E(G); 

(4)   xi −xj = yij for all i, j, i  j such that vi,vj ∈  V(G), (vi,vj) /∈  E(G); 

(5)   0 ≤ xi ≤ m, integer, for all i such that vi ∈  V(G); 

(6)   xij , sijkl , wijkl, and yij are nonzero variables. 

 

       In the above model, the first constraint is related to the definition of an edge 

label as the difference between the corresponding vertex labels. This constraint 

also causes the edge vertex labels to be distinct. Note that here an edge label is 

defined as a nonzero, but free in sign variable. Constraints (2) and (3) ensure that 

the absolute values of edge labels are not equal. Constraint (4) causes the labels 

of nonadjacent vertices to be distinct. Constraint (5) is related to this fact that the 

vertex labels are positive integers bounded between 0 and m. Constraints (1)–(5) 

guarantee that the edge labels are to be distinct and their absolute values generate 
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the set  {1, 2, . . . ,m}. The number of constraints in each equality sets (1) – (4) is 

m, (m2 −m)/2,  (m2 −m)/2, and (n2 −n)/2−m, respectively. Thus, the total number 

of constraints (1)–(4) of above problem is (m2 +1/2n2 −m− n/2). Furthermore, in 

above problem, the total number of variables is equal to the total number of 

constraints. 

 

4.2 Branching method for solving graceful labeling problem 

 

      Branch-and-bound (B&B) algorithm is widely considered to be the most 

effective method for solving integer programming problems. In this section a 

special case of B&B algorithm is developed for solving Problem 4.1. First, 

consider the relaxation form of Problem 4.1 given below. 

Problem 4.2 

(1)   xi −xj = xij for all i, j, such that (vi,vj) ∈  E(G); 

(2)   xij −xkl = sijkl for all i, j, k, l,(i, j)  (k, l), such that (vi,vj ), (vk,vl) ∈  E(G); 

(3)   xij + xkl = wijkl for all i, j, k, l,(i, j)  (k, l), such that (vi,vj ), (vk,vl) ∈  E(G); 

(4)   xi −xj = yij for all i, j, i  j such that vi,vj ∈  V(G), (vi,vj) /∈  E(G); 

(5)   0 ≤ xi ≤ m for all i such that vi ∈  V(G); 

(6)   xi j , sijkl , wijkl, and yij are free variables. 

In the relaxation form of Problem 4.1, the hard constraints are relaxed to 

produce an easy subproblem. The hard constraints of Problem 4.1 are the 

integer constraints and the nonzero constraints. First, in Problem 4.1, the 

integrality constraint is removed and then the sign of the variables is changed 

from nonzero to free in sign to generate Problem 4.2. It is clear that Problem 

4.2 is a linear model and it is much more easier to solve than Problem 4.1. In 

this branching method for solving Problem 4.2, in each vertex, the  

corresponding Problem 4.2 is solved, and if the solution satisfies integrality and 

nonzero constraints, then a feasible solution of Problem 4.1 is found and the 
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algorithm is terminated. If in each vertex, the corresponding Problem 4.2 has 

no feasible solution, then the related vertex is fathomed. If the corresponding 

Problem 4.2 has a feasible solution in the current vertex which is not a 

feasible solution of Problem 4.1, then at least one of the following cases 

occurs: 

(1) noninteger values for integer variables; 

(2) zero values for nonzero variables. 

          A vertex in a branching tree is called an active vertex if it has not been 

fathomed or separated yet. Active vertex are maintained in an active list. 

Each of the above cases (or both) can be the reason for being a vertex in 

the active list. Suppose that X∗ is the optimal solution of the current 

Problem 4.2. Now define the following sets: 

N1 = {∀xij , yij ∈ X∗ | xij = yij = 0}, 

N2 = {∀sijkl , wijkl ∈ X∗ | sijkl = yijkl = 0}, 

N3 = {∀xi ∈ X∗ | xi has noninteger value in X∗}. 

         There are two important steps that are the most critical to the 

performance of this algorithm as follows: 

(1) branching strategy: selection of the next node from the active list to 

branch on, 

(2) separation rule: selection of which variable in the selected node to 

separate on. 

            Let N be the total number of variables of the corresponding 

Problem 4.2 in the current vertex which are not feasible in constraints (5) 

or (6) of Problem 4.1. Denote the cardinality of set S by |S|. In fact, N = |N1| 

+ |N2| + |N3|, and N is a degree of infeasibility of the current node regarding 
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Problem 4.1. If N is very small, then the corresponding solution is very 

close to a feasible solution for Problem 4.1. Here, the “jumptracking 

strategy” is chosen as branching strategy. In this strategy, a vertex from the 

active list with the minimum value of N is chosen to branch on. If there is 

a tie, then a vertex with the minimum value for |N1| + |N2| is selected. If 

there is still a tie, then a vertex with minimum value for |N1| is selected. 

Finally, if the tie is not broken, then a vertex from the remaining vertices is 

selected arbitrarily. 

Suppose that according to  jumptracking strategy, the current active vertex j 

is selected. This vertex can have both types of variables causing infeasibility 

of node j for Problem 4.1. In the separation rule, one of the variables such as 

x ∈ N1, N2, N3 in the selected vertex is chosen to branch on. If the selected 

variable x ∈ N3, then the two new subproblems are generated from the 

selected vertex by using the integer part of x. Denote this strategy of 

separating current vertex by strategy A. If the selected variable x ∈ N1 or N2, 

then branch it into two different subproblems in which additional constraints 

x ≥ 1 and x ≤ −1 guarantee the nonzero values for x in the next 

vertices.Denote it by strategy B. From the experimental results, these two 

methods are applied to more than 100 samples of different types of graphs 

and it is shown that the second method is much more effective than the first 

method. Furthermore, according to test problems, separation on variable        

x ∈ N1 is more effective than on variable y ∈ N2. This fact shows that the 

potential effect of distinct edges is more powerful than that of distinct vertices 

in gracefully labeling a particular graph. Therefore, in separation rule of 

branching method, in the process of selection, the next variable, variable x ∈ 

N1 has priority to variable y ∈ N2 and in a similar way, y ∈ N2 has priority to 
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z ∈ N3. Furthermore, when the branching method continues, many branches 

on the same variable will be generated in different parts of the branching tree. 

If a variable is chosen many times in different parts of the branching tree, 

then probably the separation on this variable will not lead us to a feasible 

solution. Thus, in separation rule of this method, first variable x∈ X∗ in 

the selected vertex is chosen according to our priority list, and if there is a 

tie, then a variable with the minimum number of selections in the other 

vertices of the branching tree has priority to the other variables. Finally, if 

there is still a tie, then it is broken arbitrarily. 

 

4.2.1. The branching method for solving Problem 2.1 

 

Step 1 (initializing). Suppose that a graph G = (V , E) with n vertices and m 

edges is given and we want to know whether or not the graph G is graceful. 

Furthermore, if G is graceful, we want to know how to label the vertices. A 

vertex in a branching tree is active if its corresponding problem has not 

been either solved or subdivided yet. Let the set A denote the list of 

currently active vertices. Initially, set A = {an active vertex corresponds to 

the original problem}. 

Step 2 (branching). If list A is empty, then stop. G is not graceful. 

Otherwise, select a vertex j from the active list A according to 

jumptracking strategy. If its corresponding Problem 4.2 has a feasible 

solution in which all the integer variables of Problem 4.1 have integer 

values and all nonzero variables of Problem 4.1 have nonzero values, then 

N = 0, a feasible solution of Problem 4.1 is found, the graph G is graceful, 

and the algorithm is terminated. If the corresponding Problem 4.2 has a 
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feasible solution in the current vertex which is not a feasible solution for 

Problem 4.1, then go to Step 3. 

Step 3 (selecting). Separate the current vertex into two subproblems 

according to separa- tion rule described before. In each new vertex, solve 

its corresponding Problem 4.2. Add the new subproblems to the active list 

if they have feasible solutions for Problem 4.2. Go to Step 2. 
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Chapter 5 

Application Of Graceful Graphs 

  

 Application of graceful graph in dental arch 

                                  

                           

  

 

 Each arch consists of a right and left central incisors, lateral incisors, canines, 

first premolars, second premolars, and molars. Here, it is considered until the first 

molars. In total there are six teeth on either side of the dental arch summing to a 

total of 12 teeth.  

Each tooth of the arch is considered as a vertex and edges are formed by a line 

joining the adjacent teeth and the same type of teeth on the left and right side. 

Graceful labeling is applied in this graph taking the vertex set and the edge set as 
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V= {0, 1,……. 16} and E = {1, 2,……. 16}. 

It is found that while labeling the vertex labels and edge labels are distinct. 

Furthermore, the vertex labels follow a certain pattern in its arrangement. The 

relationship between the various teeth and the arch is assessed using graph 

labeling. 

K-Graceful Labeling  

A graph G with q edges is k-graceful if there is labeling  from the vertices of G 

to {0, 1, 2 . . . , q+k-1} such that the set of edge labels induced by the absolute 

value of the difference of the labels of the adjacent vertices is {k, k+1,. . . ,q+k-1}.  

V= {0, 1, 2, . . . , q+k-1}  

E= {k, k+1,…., q+k-1}  

where  

q = number of edges  

k = number of vertices. 

12 – Graceful Labeling  

q = 16  

k = 12 
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The vertex set consist of labels from 0 to q+k-1 = (16+12)-1 = 27  

The edge set consists of  k, k+1,…., q+k-1 i.e., labels starting from 12 ending 

with 27  

Therefore,  

V= {0,1,….27} and  

E= {12,13,14,….27}  

Thus, the dental arch can be represented by k - Graceful Labeling satisfying its 

conditions. 

Odd Graceful Labeling  

A graph G with q edges is considered to be odd-graceful if there is an injection  

from V(G) to {0,1,2,…. 2q-1} such that when each edge xy is assigned label        

 (x)−(y)  the resulting edge labels are {1,3,5,….2q-1}.  

Now, we try to work out odd graceful labeling in the dental arch. Odd graceful 

labeling is one of the most widely used labeling methods of the graph while the 

labeling of graphs is perceived to be a primary theoretical subject in the field of 

graph theory and it serves as models in a wide range of applications. 
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Here, p=12, q=16. The vertex set consist of labels from 0 to 2q – 1= (2.16)-1 =31. 

The edge set consists of all the odd labels < 31  

Therefore, V= {0,1,….31} and E = {1,3,5,….31}  

Thus, odd graceful labeling is applicable in dental arch models.  

Thus the dental arch can be represented by graceful labeling, and we find 

that there is a certain pattern on doing so. This pattern could be used to 

analyze the arch and its teeth. Thus, graceful labeling is a powerful tool that 

makes complicated patterns to be learned easily and conveniently in various 

fields. 

Coding Theory  

 

The design of certain important classes of good non periodic codes for pulse 

radar and missile guidance is equivalent to numbering of complete graph in such 

a way that all edge numbers are distinct. The vertex numbers then determine the 

time positions at which pulse are transmitted. Complete graph Kn is a graph in 

which every paired vertex are joined by an edge.  

In complete graph K4 , 

p = v = 4, q = E = 4C2 = 6 

∴  : V → {0,1,…..,6}, ∗: E → {1,2,3,4,5,6} 
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However K5 is semi –graceful labeled, A semi –graceful labeling is defined to be 

one in which the constraint that the edge lengths need to be consecutive is relaxed 

, one edge length may be skipped by adding n +1 edge length to the graph.  

K5 is semi –graceful labeled as follows.  

𝑝=|𝑉|=5 𝑞=|𝐸|=10  

: V → {0,1,2,……11}  

∗: E → {1,2,3,4,5,7,8,9,10,11}  
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Quasi – graceful labeling is defined to be when the vertex labels are allowed to 

be extended beyond the largest edge length value however edge length 

constraints are left unchanged . Using these type of graceful labeling the 

extension to coding theory is made possible. Once the graph is gracefully , semi 

gracefully or quasi-gracefully labeled each vertex label is assigned to the ruler , 

while using no other tick mark on the ruler.  

Ruler to the complete graph K4 

 

 

Communication Networks  

If one had a communication network with a fixed number n+1 of communication 

centers ( i.e. vertex) and they were numbered 0,1,…..,n then the lines between 

any two centers could be labeled with the difference between two center labels    

( i.e. vertex labels)  

If the communication center grid was laid out in a graceful graph , we would then 

be able to label the connections between each center such that each connection 

would have a distinct label.  

One good advantage of such a labeling is that if a link goes out , a simple 

algorithm could detect which two centers are no longer linked.  
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CONCLUSION 

 

                  The graceful labeling of graphs has been a topic of research for 50 

years and it still has many properties to be found. This project gives a brief 

overview of the subject, presenting  some theoretical results . 

                 In Chapter 2, the problem is presented, as well as the gracefulness of 

some rather simple graph classes like cycles and wheels. We also show necessary 

conditions to the existence of a graceful labeling for a graph, and two methods of 

constructing graceful graphs. In particular, one of them shows that any graph is 

an induced subgraph of some graceful graph. In Chapter 3, we focus on graceful 

labeling of trees, more specifically, on different ways to approach the Graceful 

Tree Conjecture. 

               In Chapter 4, we move our focus  for modeling the graceful labeling 

problem as a linear programming model. The main goal of this model is to 

determine how to label the vertices of different classes of graceful graphs. Then a 

branching strategy was developed  to solve the model. The algorithm has been 

extensively tested on a set of different classes of randomly generated graphs.  

Moreover, the algorithm described in chapter does not depend on a particular 

class of graphs and can be easily applied to different types of graphs. Finally in     

chapter 5 we focus on the application of graceful graphs. Graceful labeling have 

widespread application in coding theory, dental arch, communication network. 
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