
Editorial 

Discrete Mathematics deals with objects that can assume distinct, separate values. 

Graph Theory, Combinatorics, Coding Theory and Cryptography are different branches of it. 
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problem sessions are motivated to the world of research. 
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have become daily tools and assumes major roles in the development of science and 
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the formal theory behind these. Recent trends in the area of Discrete Mathematics were 
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Chapter 1

Integer Factoring -

Computational Challenges

C.E. Veni Madhavan,

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore,

Email: cevm@csa.iisc.ernet.in

In this talk the integer factoring methods are explained in

detail. The main points covered are discussed here.
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2 Chapter 1. Integer Factoring - Computational Challenges

1.1 Primes in P and the AKS Algo-

rithm

• n prime ⇐⇒ (x + a)n ≡ xn + a mod n,∀a

• n prime ⇐⇒ (x + a)n ≡ xn + a mod ((xr − 1), n)∀a, for

appropriately chosen r

• Find least r, such that ordr(n) > log2 n

• for a = 1 to ⌊
√

φ(r) log n⌋ do

if ((x + a)n 6= xn + a mod (xr − 1, n). Then output the

prime.

Lemma 1.1.1. ∃r 6 max{3, ⌈log5 n⌉} s.t. ordr(n) > log2 n Let

p be a prime divisor of n, l = ⌊
√

φ(r) log n⌋.

For polynomial f(x) and integer m, m is introspective for f(x)

if (f(x))m = f(xm) mod (xr − 1, p).

Lemma 1.1.2. If m,m′ are introspective numbers for f(x) then

so is m.m′. (introspective numbers are closed under multiplica-

tion)

• m introspective for f, g =⇒ m introspective for f.g
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• Then the integers in the set I = {(n/p)i.pj | i, j > 0} is

introspective ∀ polynomials in the set P = {∏l
a=0(x+a)ea |

ea > 0}

• G = {I mod r} is a subgroup of Z∗
r of size, say t

• H = {P mod (h(x), p)}, h(x) an irreducible factor of the

rth cyclotomic polynomial, is a subgroup of the multiplica-

tive group of the finite field F ≃ Fp[x]/(h(x)).

Lemma 1.1.3. AKS, H.Lenstra | H |6 n
√

t if n is not a power

of p.

1.2 Algorithms Engineering

Typical PIV 3 GHz, linux, C Benchmarks are discussed.

• Stream Ciphers ( ≃1.5 Gbits/sec ) :

LFSR, non-linear FSR, FISH, PIKE, A5 ...

• Block Ciphers ( ≃300 Mbits/sec ) :

DES, IDEA, BLOWFISH, RC5 ( 64 bit ); RC6, TWOFISH,

MARS, RIJNDAEL, SERPENT ( AES-128 bit )
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• Public Key Ciphers ( ≃20 Kbits/sec ) :

RSA, ElGamal ( Fp;Fq, q = 2n, pn ), Elliptic Curve (

E(Fq) ); Chor-Rivest, NTRU ...

• Digital Signatures

( generation ≃20 Kbits/sec, verification ≃ 1.2 Mbits/sec )

:

RSA, ElGamal ( Fp;Fq, q = 2n, pn ), Elliptic Curve (

E(Fq) ); blind, undeniable, group ...

• Mitsubishi Smart card M16C - 16bit, 10MHz, 64KB ROM,

4KB RAM 400 msec RSA Verification ( 1024 bit modulus,

e = 65537 )

1.3 Cryptanalysis

1. Integer Factoring Problems (IFP) Let N be an integer

with N = p ∗ q for prime integers, p, q. Given N find the

factors.

2. Discrete Logarithm Problems (DLP) Let G be a group.

The groups to be considered are (i) the multiplicative

group of the finite field Fq, for q an odd prime or q = 2m,
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(ii)the additive group of points on an elliptic curve over a

finite field E(Fq). Let g be a fixed, distinguished element

(e.g.,a generator of a cyclic group or an element of large

order) of G and let a = gx for some x. Given g, a in G

determine x.

3. Statistical Analysis Problems (SAP) - cryptanalysis Given

the cipher-text c =< c0, . . . , cN >, cj ∈ {0, 1} output of

(i) a stream cipher or (ii) a block cipher, determine the

corresponding (i) plain-text p =< po, . . . , pN , pj ∈ {0, 1} >

or, (ii) symmetric key k =< ko, . . . , kn, kj ∈ {0, 1} >,

under various cryptanalytic scenarios .

4. Statistical Analysis Problems (SAP) - steganalysis Given

a stego image S, determine with high levels of statistical

significance, (1)the presence, (ii)the length of embedded

content (iii) the location of embedding and (iv) the em-

bedded content
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1.4 Integer Factoring - Basic Ideas

Factor given integer n in to its prime factors.

Special interest n = p ∗ q.

1. Trial Division

Divide n by all primes p 6
√

n.

Complexity: O(n/ log n); exponential in log n.

2. Group Order Methods

based on the smoothness of order of a hidden group

(a) p − 1 method

(b) p + 1 method

(c) ρ-method and λ-method

(d) Elliptic Curve Method (ECM)

3. Quadratic Congruence Methods

Basic idea by Fermat. Odd n can be written as n = x2−y2.

Solving the congruence X2 ≡ Y 2 (mod n) with X 6= Y

(mod n); Two factors are gcd(X+Y, n) and gcd(X−Y, n).

(a) Dixon’s Method
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(b) Quadratic Sieve Method

(c) Number Field Sieve Method

1.5 Integer Factoring - Group Order

Methods

p − 1 Method by Pollard:

1. Based on Fermat’s little Theorem

∀p, if gcd(a, p) = 1 then ap−1 ≡ 1 (mod p).

2. Integer N is B-smooth if p 6 B for every prime p|N

e.g., 34496 is 11-smooth (34496 = 26 ∗ 72 ∗ 11).

3. Integer N is B-power smooth if pe 6 B for every prime

with pe||N .

4. This method succeeds if p (say) is B-power smooth.

gcd(aB! − 1, n) = p.

e.g., n = 443623, B = 11, B! = 39916800 and gcd(339916800−

1, n) = 617
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5. Essentially, if this method works if the subgroup Z∗
p con-

tained in Zn has smooth order.

p + 1 Method:

1. Similar to p − 1 method but succeeds if p + 1 is smooth.

2. Much slower than p − 1

1.6 Integer Factoring - Group Order

Methods

Elliptic Curve Method: (ECM)

• An Elliptic Curve is a genus g = 1 non-singular curve

given by

Y 2 = X3 + aX + b a, b ∈ F

with ∆ = −16(4a3 + 27b2) 6= 0 over field F

• Solutions of over F×F, along with special point , forms ad-

ditive abelian group; where given two points P = (x1, y1)

and Q = (x2, y2), P 6= −Q
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1. Addition: P 6= Q, then P + Q = (x3, y3) where,

x3 =

(

y2 − y1

x2 − x1

)2

− x1 − x2; (1.1)

y3 = −y1 +

(

y2 − y1

x2 − x1

)

(x1 − x2). (1.2)

2. Doubling: P = Q, then 2P = (x3, y3) where,

x3 =

(

3x2
1 + a

2y1

)2

− 2x1; (1.3)

y3 = −y1 +

(

3x2
1 + a

2y1

)

(x1 − x2). (1.4)

• Above arithmetic is called Chord-Tangent Law.

• Weil-Hasse Theorem

p + 1 − 2
√

#F 6 #(F) 6 p + 1 + 2
√

#F

• Define over Zn; doesn’t form a group

• There are points P and Q such that P + Q is not defined.

• Will get the factor of n when inverse doesn’t exist while

performing addition or doubling.
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• OR factoring n succeeds if (Zp) is smooth where p|n.

i.e., (B!)P = in Zp but (B!)P 6= in Zn

• Has lots of advantages over other methods

– Lots of curves are available to try over Zn

– Parallelization is possible

– Many optimizations are possible for scalar multipli-

cation ((B!)P ) computation.

• Best known among group order method.

• Complexity: Sub-exponential in size of the prime factor.

1.7 Quadratic Congruence Methods

: Algorithm - Dixon

1. Build the prime base , P = {p1, . . . , pπ(v)}, where π(v) is

the number of primes below v.

2. Pick a random z, 1 6 z 6 n − 1 and let w = z2 (mod N).

3. Factorize w over the prime base P . Let w = W × ∏

pαi

i .
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4. if W 6= 1, then goto Step2 else accumulate sufficient num-

ber ( say, π(v)+ 1 ) of factorizations and store the vectors

γ = (γ1, . . . , γπ(v)+1) where γ represents the parity vec-

tor of the exponents, γi ≡ αi (mod 2). Perform Gaussian

elimination mod 2 on the parity vectors γ to get a zero

vector.

5. if no nontrivial combination is generated in Step4 then

goto Step2 else compute y as the product of prime pow-

ers obtained in Step4 and let x equal the product of the

corresponding z.

6. if x 6≡ ±y (mod N) then compute gcd(x ± y,N) and

HALT else delete the ”first w and goto Step2

1.8 Number Field Sieve

1. Find a, b ∈ I, gcd(a, b) = 1 such that both the rational

integer a+mb and the norm of the algebraic integer a+αb

are smooth ( they factorize into a small prime base ).

2. Factorize the rational integer a+mb as a+mb =
∏

p6pmax
pwp ,
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and factorize a + αb into units and primes in I[α] as

a + αb =
∏

u∈U

utu
∏

g∈G

gνg

,where tu ∈ I, νg ∈ I>0. Here U is a set of predetermined

set of generators for the group of units of I[α] and G is

a set of generators for the prime ideals of prime norms

6 Bound = pmax. Then, since φ(a+b) = a+mb (mod N)

we have the identity

∏

u∈U

φ(u)tu
∏

g∈G

φ(g)νg ≡
∏

p6pmax

pwp (mod N)

3. Generate a ”sufficient” number of such congruences and

perform Gaussian elimination mod 2 on the exponent vec-

tors tu, νg, wp to get nontrivial solutions to the congruence

x2 ≡ y2 (mod N) and then compute gcd(x ± y,N).

Algorithm-NFS factors an integer N in expected time O(exp{(c+

o(1))(ln N)1/3(ln ln N)2/3})

Step 1 : Select an irreducible polynomial f over Q with f(α) =

0, for α ∈ C and s.t. ∃ m ∈ Z with f(m) ≡ 0 mod N .
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Let K ∼= Q(α). Let ZK = Z[α] be the ring of integers.

Fix a factor base F .

Step 2 : Generate a set S = {(c, d) | c, d ∈ Z, (c, d) = 1} s.t.,

we can express

1. c + md in terms of rational primes in F

2. c + αd in terms of first degree prime ideals in F

3. |S| is greater than the size of F

The map Φ : ZK → GF (p) by α 7→ m (mod p) gives

relations in indices of primes and first degree prime ideals.

Step 3 : Solve the linear system of equations obtained from

previous step to compute the indices of rational primes

and prime ideals in the factor base F

Step 4 : Express some multiple of a in terms of medium size

elements and compute their indices.

• Step 2 is the most time consuming, in general. It can be

speeded up by selecting good polynomial f with specific

properties.
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• Reducing the matrix size in the Step 3

• Efficient methods for large sparse system of equations over

FF.

1.9 Computational Complexity

• These heuristics have either exponential or sub-exponential

time complexity in size of input (ln n) given by

L[n, γ, c] = O
(

exp((c + o(1)(ln n)γ(ln ln n)1−γ))
)

,

Here 1 < c 6 2 and 0 < γ 6 1.

• Random Squares, Quadratic Sieve : γ = 1/2. Number

Field Sieve : γ = 1/3.

1.10 Our Innovations

1. Polynomial Selection : the low degree polynomial f : f(m) ≡

0 (mod N), used to specify the number field.
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(coefficients, roots, large prime divisor distances)

2. Sieving : We are evolving, analysing and testing a variety

of new heuristics to improve the practical performance.

(multiple sieving, lattice sieving, polynomial siev-

ing)

3. Large systems of equations over finite fields : The method-

ologies used are sparse Gaussian elimination, block Wiede-

mann and block Lanczos iterations.

effect of matrix compaction effect of large prime

cycles

4. setting up and solving the quadratic congruence modulo

N .

square roots of large algebraic integers

1.11 Combinatorial Problems

1. graph G on large primes in candidate relations

2. 2, 3, 4 cycles in G

3. matchings in a bipartite version of G
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4. use of information derived from items above in matrix com-

paction

5. densities of roots of polynomial f modulo primes in Factor

Base corresponding to the first degree prime ideals

6. characterizations of number of roots in terms of coefficients

of the polynomial f

1.11.1 Cryptanalysis Techniques and Effort

• Stream Ciphers :

linear complexity profile, correlations, mul. var. poly.

eqns ...

• Block Ciphers :

differential, linear, Mod n attacks ...

• Public Key Ciphers integer factorization, discrete loga-

rithms in groups, lattice short vectors, modular square

roots ...

• side channel attacks - timing attacks, power analysis ...

• 1 Day = 86400 >∼ 216 seconds; 1 Year = 225 seconds,
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• (assuming 1 single precision int/float mul instruction = 1

cycle);

1 MIPS/ 1 Mflops Year = 245 cycles ;

1 BIPS/ 1 Gflops Year = 255 cycles ;

1 TIPS/ 1 Tflops Year = 265 cycles ;

1 PIPS/ 1 Pflops Year = 275 cycles ;

• Our PC is 1GHz Pentium IV processor = 230 cycles/second

; 1 PC Year = 255 cycles;

• Our super computer PARAM-PADMA delivers ≃ 240 cy-

cles/second or ≃ 265cycles/year - a PARAM-PADMA year

(approximately the work-factor for factoring a 512 bit in-

teger or breaking a RSA-512 key)

• DES (i) brute-force : 255 trials X 29 cycles per trial = 264

cycles = 512 BIPS Years or = 512 PC Years

• Assuming Differential Cryptanalysis implementation with

all the required storage and communication, the effort is

245 trials or 254 cycles or 0.5 PC Year

• Let L(n) = exp{(1.93 + o(1))(log n)1/3(log log n)2/3}
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• L(n) represents the cost of all computations for the cur-

rently, known, most efficient algorithms for Factoring, DL

etc.

• The [1999] factoring record RSA155 ( 512 bit n = pq ),

would thus be L(229
) ∼ 264. In actual practice it was 258,

that is 64 times faster than straight DES attack. I call this

equivalent to 1/64 DES cracks.

• I must note that certain arithmetic ops in factoring require

more cycles than DES ops. So this scaling is actually not

right.



Chapter 2

Alan Turing and his

Computing Legacy

C.E. Veni Madhavan,

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore,

Email: cevm@csa.iisc.ernet.in

These are the points Discussed.
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2.1 Turing Points

• father - Julius Turing was in Indian Civil Service

• born: 23 June 1912 London; Sherborne School, in Dorset,

1926; King’s College, Cambridge, 1931

• intellectual milieu of Russell, Whitehead and Wittgenstein

- on the nature of mathematics and logic

• debates on the notion of undecidability of Gödel

• is there a way to identify the undecidable questions

• 1937, Turing’s influential paper On Computable Numbers:

in Turing’s words, “it is about the difficulty of telling right

from wrong”

• TP 1: postulated an abstract machine that performed an

algorithm

• TP 2: a machine that could alter its internals so that it

could perform all the functions of any Turing machine - a

universal Turing machine

• TP 3: UTM can not tame undecidable questions; but gave

a model for a practical computing machine
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• TP 4: “Dip the apple in the brew, Let the sleeping death

seep through”

• TP 5: in 1939, Govt. Code and Cypher School (GCCS)

invited Turing to be a cryptanalyst at Blechley Park

• German Enigma attacked by Polish Rejewski was the ob-

session of the Blechley think-tank

• the Enigma operators duplicated the message key (say

YGB) twice and encrypted (YGBYGB)

• TP 6: plain-text and cipher-text association study - crib

• all key-dependent permutations could be tried by changing

the plugboard cablings and scrambler settings

• TP 7: Rejewski, Turing (and any cryptanalyst) at this

point separates the compound possibilities by looking closely

at the crib

• TP 8: Turing worked out the chains associated with Enigma

settings, a guessed plain-text and the correct plain-text

• TP 9: Turing invented a multi-chain processing scheme

to lift the information from chains, to reduce the number
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of key trials; he devised an electrical circuit to neutralise

the effect of the plugboard settings

• TP 10: he devised a system of 26 circuits and tied these

with inputs to the scramblers

• TP 11: thus Turing’s combination of combinatorial anal-

ysis, cribs, loops and electrical circuits led to the design of

the cryptanalytic engine bombe (coined by Rejewski ear-

lier)

• several bombes were built, by 1941, patronized by Churchill

• the motley crew at Blechley consisted of mathematicians,

engineers, linguists, historians, poets, bridge/chess players

and crossword solvers

• several practical heartburns - some Enigmas (Navy) had

additional reflectors; plain-text was randomized; cribs were

getting rare

• a final combination of, what I call backdoors, trapdoors and

side-channels, were employed by the British to circumvent

these
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• Turing: computation, algorithm, language, machine, pro-

gram

• Turing: efficacy and efficiency

• Turing: cryptanalysis and reversal (inversion) of compu-

tation

• AI: Turing test

• cryptanalysis - models, side channels

• machine computation and cognition

• self-reflection, introspection, free-will, extension:

• a TM with an interpretive program that analyses its own

actions and predicts its future actions [Minsky, Simon]

• even such a program is NOT human - require a “heuristic”

mental model and a “mentalese”
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Chapter 3

An invitation to Coding

Theory

C. R. Pradeep, Channabasaveshwara Institute of Technology

Gubbi, Karnataka,

Email: seearepi@gmail.com

This is a note based on which a course of two talks on Cod-

ing Theory was presented for a non-specialist diverse audience.

Coding Theory, also known as Error Correcting Codes (ECC), is

an important branch of mathematical theory of electrical com-

25
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munication. As the name suggests, ECC deals with correcting

the errors sent through a noisy channel. More elaborately this

means, if a signal is sent and the signal gets corrupted due to

the effects of the medium through which the signal travels, then

the receiver gets an incorrect message. Coding theory studies

ways and means of detecting and correcting such errors.

3.1 Introduction

Following is a non-mathematical illustration of this. Suppose

one receives the following message

KARELA IS A BEUAFITUL STYTE

One can use ones knowledge of English language and refer to

the context of the message and decode it as

KERALA IS A BEAUTIFUL STATE
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The main reason for detecting and correcting the errors is

the previous knowledge of English. Since both the sender and

the receiver had put in efforts to learn the language they have

been able to communicate in an error free fashion. Essentially

Coding theory tells us how this is done between two machines.

A common language and unambiguous rules need to be taught

to both machines regarding spellings of the words in a message.

One has to start by fixing an alphabet! Normally alphabets

used in a communication system could be symbols representing

elements of a finite field (or these days algebraic number fields!).

But for our lectures we (mostly) stick to the binary field con-

sisting of 0, 1. The words are fixed to be elements of particular

subspaces of vector spaces over finite fields. This is how Linear

Algebra plays a pivotal role in Coding Theory. In fact for a

mathematician, classical coding theory is nothing bur linear al-

gebra over finite fields. How the dimensions of the vector space

and the subspace are related to number of words and distance

between the words shall be explained in the talk. Distance be-

tween two words is essentially a measure of how different the
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words are. These give raise to various bounds mentioned at the

end of this note.

3.2 Definitions

A q-ary linear code C is a linear subspace of F n
q , the n-

dimensional vector space over finite field with q elements. If

C has dimension k, it is called [n, k] − code.

The Hamming distance between two code words x and y

is the number of coordinates in which they differ.

The weightw(x) is defined as distance between x and 0. At

times and [n, k]-code is denoted by [n, k, d]-code where d is the

minimum of all weights in the code.

A generator matrix G for a [n, k]-code C is kn matrix

whose rows are a basis of C.

If C is a [n, k]-code, the dual code C⊥ is defined by all the
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vectors in F n
q which are orthogonal to every vector in C. Here

standard inner product is to be used. If G = [IkP ] is a generator

matrix in the standard form of the code C, the H = [−P⊥In−k]

is a generator matrix of C⊥. H is also called parity check matrix

of C.

3.3 Some standard codes and their prop-

erties

Hamming codes: A binary code Cm of length n = 2m−1,m >

1, with an m(2m − 1) parity-check matrix H is called a binary

Hamming code if the columns of H are the binary representa-

tions of the integers 1, 2, 3, 2m − 1. This is a 1-error correcting

code of dimension (2m − m − 1).

Cyclic codes: Cyclic codes are a class of codes with the

property that if (a0, a1, a2, an−1) is a code word, then so is (an−1, a0, a1, a2, an−2).

As will be seen in the lecture, the following result will be crucial
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in understanding the link between algebra and coding theory of

cyclic codes. A linear code C is cyclic if and only if C is an

ideal of Fq[x]. Since ideals in Fq[x] are principal, the code may

be specified by specifying the generator polynomial of the ideal

or even by specifying the roots of the polynomial. This is what

is exploited in the definition of BCH codes.

Let b be a nonnegative integer and let α be a primitive nth

root of unity in F(q
m) where m is the multiplicative order of

qmodulon. A BCH code over Fq of length n and designed

distance d, 2 6 d 6 n, is a cyclic code defined by the roots

αb, αb+1, α(b+ 2), α(b+ d− 2) of the generator polynomial. Spe-

cial cases of BCH codes are very important. E.g., if n = q−1, a

BCH code of length n over Fq is called Reed-Solomon Codes.

3.4 Some important bounds

• A code C with minimum distance d can correct upto t

errors if d > 2t + 1.

• (Hamming bound) Let C be a t-error correcting code
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over Fq of length n with M code words. Then M(1 +

(nC1)(q − 1) + (nC2)(q − 1)2 +...+(nCt)(q − 1)t 6 qn.

• (Plotkin bound) For a linear [n, k]-code C over Fq of

distance d, we have d 6
(nq((k−1))(q−1))

(qk−1)
.

• (Gilbert-Varshamov bound) There exists a linear [n, k]-

code C over Fq with minimum distance > d, whenever

q((n − k)) >
∑

((n − 1)Ci)(q − 1)i.
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4.1 Introduction

The topic of my talk could be called the ’Graph Theory in the In-

formation Age’ as well. Origin of Graph theory could be traced

back to about two hundred eight years, when the legendary Swiss

mathematician Leonhard Euler(1707-1783) presented a solution

of the celebrated KONIGS BERG BRIDGES PROBLEM’ on

26th August 1735 in the St.Peters academy. ”The Konigsberg

Bridge Problem is Euler’s most famous work,” though scholars

in other specialties (differential equations, complex analysis, cal-

culus of variations, combinatorics, number theory, physics, naval

architecture, music, . .. ) might disagree.”.

Biggs, Lloyd and Wilson [ ] has remarked that ”The ori-

gins of graph theory are humble, even frivolous. Whereas many

branches of mathematics were motivated by fundamental prob-

lems of calculation, motion, and measurement, the problems

which led to the development of graph theory were often little

more than puzzles, designed to test the ingenuity rather than to

stimulate the imagination. But despite the apparent triviality

of such puzzles, they captured the interest of mathematicians,
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with the result that graph theory has become a subject rich in

theoretical results of a surprising variety and depth.”

But , exciting, interdisciplinary applications of graph the-

ory, especially for the past fifty years is remarkable, thanks to

computer science. The storing of information has a long history

starting from the papyrus and the printed books to the present

day complex interconnected web pages. From the first ever web-

site published in August 1991, by Tim Berners -Lee at CERN,

the present number exceeds 1,000,000,000.

The world wide web graph W has as its vertices the web

pages and edges corresponding to the links between these pages.

W is a dynamic, sparse, self organising, small world, and power

law network. The Small world network is a network in which

most vertices are not neighbours of one another but most of

them can be reached from every other by a small number of

steps. Such networks are characterised by dense local clustering

or cliquishness. It turns out that such networks are plenty , such

as citation networks, electric power grids, telephone class graphs,
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human brain networks, protein-protein interaction networks etc.

Collaboration graphs, in particular the research collabora-

tion network of Paul Erdos itself is an interesting object of study.

Due to its huge size , the structure of the world wide web con-

tinued to be an enigma. It was first described in [1] and also the

journal, Nature (405, 2000) that W has a bow-tie structure, the

knot consisting of a strongly connected component or core. We

shall discuss some of these very exciting interdisciplinary aspects

of the real world networks.
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An automaton A = (Q,A, δ) is a triple where Q is a finite set,

called set of states, A is the input alphabet and δ : Q × A → Q

is a function, called transition function. In order to study the

41



42 Chapter 5. On strongly connected synchronizing automata

behaviour of A on words over A we extend δ to Q×A∗ as follows:

δ(q, 1) = q,

δ(q, wa) = δ(δ(q, w), a), w ∈ A∗, a ∈ A.

A is strongly connected if for any q, q′ ∈ Q there exists a word

u ∈ A∗ such that δ(q, u) = q′. A word w ∈ A∗ is called syn-

chronizing (reset) for A if δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.

An automaton A is called synchronizing if it has a synchroniz-

ing word. The set of all synchronizing words of A (Syn(A))

is an ideal of A∗(ideal language). Here we show that Syn(A)

is a biordered set language (language accepted by a biordered

set). Also every ideal regular language is the set of synchronizing

words of some strongly connected automaton.
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The Vizing’s conjecture [5], possed in 1968, is one of the

famous unsolved problems in graph theory related to the dom-

ination number of the cartesian product of two graphs. The
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conjecture states that, if G and H are any two graphs then

γ(G�H) > γ(G)γ(H). In other words, the conjecture states

that the domination number is supermultiplicative with respect

to cartesian product of two graphs. In this talk, we discuss

some of the recent developments towards the attempts to prove

or disprove the conjecture.

Keywords : Domination number, Cartesian product,

Vizing’s Conjecture

6.1 Basic Definitions and Terminol-

ogy

We consider only finite, simple graphs G = (V,E) with |V | = n

and |E| = m.

A set S ⊆ V of vertices in a graph G is called a dominating

set if every vertex v ∈ V is either an element of S or is adjacent

to an element of S. A dominating set S is a minimal dominating

set if no proper subset of S is a dominating set. The domina-
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tion number γ(G) of a graph G is the minimum cardinality of a

dominating set in G [3].

A graphical invariant σ is supermultiplicative with respect to

a graph product ×, if given any two graphs G and H σ(G×H) >

σ(G)σ(H) and submultiplicative if σ(G × H) 6 σ(G)σ(H). A

class C is called a universal multiplicative class for σ on × if for

every graph H, σ(G × H) = σ(G)σ(H) whenever G ∈ C [4].

The cartesian product of two graphs [3] G = (V1, E1) and

H = (V2, E2), denoted by G�H has vertex set V1 × V2 and any

two vertices (u1, v1) and (u2, v2) are adjacent in G�H if either

u1 = u2 and v1v2 ∈ E2 or u1u2 ∈ E1 and v1 = v2.

6.2 Vizing’s Conjecture

The Vizing’s conjecture [5], possed in 1968, is one of the fa-

mous unsolved problems in graph theory related to the dom-
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ination number of the cartesian product of two graphs. The

conjecture states that, if G and H are any two graphs then

γ(G�H) > γ(G)γ(H), where G�H denotes the cartesian prod-

uct of G and H. In other words, the conjecture states that the

domination number is supermultiplicative with respect to carte-

sian product of two graphs. The conjecture is solved for special

classes of graphs like those which have domination number less

than or equal to three, cycles, chordal graphs etc. Interesting

results were obtained on graph classes which satisfies the equal-

ity in Vizing’s conjecture. A recent survey on results related to

Vizing’s Conjecture is [2].

6.3 Similar studies in other graph pa-

rameters and products

Vizing’s Conjecture remaining unproved for decades also made

the study of other graph parameters under various graph prod-

ucts interesting. A few examples for such parameters are in-

dependent domination number, global domination number, co-

graphic domination number, global cographic domination num-



6.3. Similar studies in other graph parameters and products47

ber, fair domination number, chromatic number, homometric

number etc. under various graph products like tensor product

and strong product.
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A technique by which the infinitude of primes was established

finds the sum of harmonic series of primes. If one asks whether
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this technique can be used to establish the infinitude of twin

primes, the answer is NO. Brun proved that the harmonic series

involving twin primes converges to a finite number. We will see

a proof of this classical result.

7.1 Basic definitions and notations

Prime numbers, as all of us know, are positive integers greater

than 1 with no factors other than 1 and the number itself. A

composite number is a natural number greater than 1 which is

not a prime. So, 1 does not belong to any of these two cat-

egories. One is just one! By twin primes, we mean a pair of

prime numbers with difference equal to 2. For example, 3,5; 5,7;

11,13; 17,19. . . . There is something special about 5 above. It is

the only one prime number appearing in two twin prime pairs.

Why is it like that?

Lemma 7.1.1. One of any three consecutive numbers in the AP

2n + 1 is a multiple of 3.

Proof. Proof of this statement is very easy, unless you really
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want to make it complicated! The three numbers are 2n+1, 2n+

3, 2n+5 and they give, modulo 3 the remainders 0, 1, 2 in some

order. So one of them has to be a multiple of 3.

So one of 3, 5, 7 is a multiple of 3. Here 3 itself is appearing

and it is a multiple of 3, and the only prime which is a multiple

of 3! But in all other cases, we are not that much fortunate. So

5 is something special; the one and only one prime in two twin

prime pairs.

Now techniques like the Sieve of Eratostanes (see [3]) help

us to list all primes up to a certain n. It is not very clear that

whether there a sieve to list out all the twin primes. Of course

the Sieve of Eratosthanes itself can be used with an extra sieving

of non twin primes. But anything else more effective is there is

the question.

The notion convergence of infinite series we use here is in

the real analysis setting. That is, an infinite series is absolutely

convergent if the sequence of partial sums of the absolute value

terms converge. We will be dealing with only natural numbers

and their reciprocals and so convergence and absolute convergece
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mean the same for us. For a finite set A, the symbol #A denotes

the number of elements in it. For an infinite set A, the symbols

gives ∞. The main focus of this article is on a result related

to the twin prime conjecture. We know, after Euclid, that there

are infinitely many primes. The set of primes is not finite. A

classic proof is available in the Elements of Euclid (It has been

reproduced in many number theory books. Another place to find

it is Proofs from the Book [1]). Another proof appeared from

Euler later. The proof considers the infinite series of reciprocals

of all the primes and proved that the sum is not finite.

∑

p a prime

1

p

is not finite.

This implies that the collection of reciprocals cannot be fi-

nite. Can we use the same technique to show that number of

twin primes is also infinite? [Twin Prime Conjecture / TPC] Set

of twin primes is not finite. If we take the reciprocal sum of all

twin primes and find that the sum of these reciprocals diverge,

then? Since the partial sums are increasing, if it is bounded, it

has to converge. So it is enough to show that it is bounded to
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show that it is convergent. If it is not finite, then it is divergent.

Nothing can be made out of the test then.

The roots of the twin prime conjecture cannot be easily

traced out. It seems that in 1849, a French mathematician

Alphonse de Polignac made the more general conjecture that

For every natural number k, there are infinitely many prime

pairs p and p′ such that p′ − p = 2k.

The case k = 1 in the above is the twin prime conjecture.

For no single k, the conjecture has been verified as of today.

Coming back to our problem, if we show that the sum of

reciprocals of a set of positive numbers is finite, then the number

of numbers in that set has to be finite. Note that, this is not

true the other way. That is, even if the sum of reciprocals is

finite, it is not necessary that the number of numbers is finite.

For example, the sum of reciprocals of all the squares of natural

numbers is finite (and the sum if π2/6).

An analysis of the results shows us something interesting.

There are are more primes than that there are squares (since

the sum of reciprocals of all natural number squares is finite).
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Infact,
∑

n

1

nr

taken over all natural numbers is finite when r > 1. So there

are more primes (in some sense) than there are nr for any r >

1! This also means that there are more primes than squares,

making the collection of primes bigger.

Viggo Brun, a Norwegian mathematician poured water into

the plan - of establishing TPC by showing that the sum of recip-

rocals of twin primes is infinite. In 1819, he proved that [Brun]

Sum of reciprocals of twin primes is finite.

The aim of this expository article is to have a quick look at

the proof of Brun. We will not elaborate the steps, but will try

to comment on the important points and key ideas of his proof.

The arguments are mainly combinatorial, requiring a little bit

more attention. A detailed proof can be found in [2].
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7.2 Sieve methods

Sieve theory is a set of general techniques in number theory,

designed to count, or more realistically to estimate the size of,

sifted sets of integers. (See [3] for a detailed study on sieve

methods). A well known sieve is the sieve of Eratosthenes. It is

used to find primes below a given limit by filtering non primes

one bye one systematically. A key observation used in this sieve

is that every number below x which is not a prime, has a prime

factor below x1/2. So to find all primes below 100, we need to

only check whether a number N has a prime factor below 10 or

not. That is, check whether 2, 3, 5, 7 are factors or not. If no is

the answer for all these primes, the number taken is a prime!

π(x) denotes the number of primes up to and including x.

π2(x) denotes the number of twin prime pairs (n, n + 2) with

n 6 x.

To prove the negative result (in the sense that, this discour-

ages one from trying to prove TPC!) Brun precisely proved the

following: There exists a positive constant C so that for a given
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x > 3,

π2(x) < C.x.

(

log log x

log x

)2

Brun applied a a double sieving to the sequence of natural

numbers so that all those numbers n were stricken out for which

n or n+2 are composite. So, after the process, only those natural

numbers n remain where (n, n + 2) is a prime pair.

7.3 Brun’s theorem: First step

Let T (x) be the number of the first members n of pairs of twin

primes for which n 6 x. For example, T (20) = #{3, 5, 11, 17} =

4. By U(x; y), we mean the number of odd numbers n 6 x

for which n(n + 2) is not divisible by any of the odd primes

pj 6 y. For example, U(20, 4) = number of odd n 6 20 such

that n(n+2) not a multiple of 3 = #{5, 11, 17} = 3 Suppose now

that y 6 (x + 2)1/2. Then if n or n + 2 composite, it must have

atleast one pj 6 y as factor, and so it would not be counted for

finding U(x, y). So, it will be removing all non prime product
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n(n+2).But at the same time, it might have removed pj(pj +2)

also which might have been a twin prime pair! So, if r is the

number of primes pj 6 y, then

T (x) 6 r + U(x, y) (7.1)

Now rewrite U(x, y) to find an upper bound for it. B(x; p1, . . . , pk)

counts the number of odd numbers n 6 x for which n(n + 2)

is divisible by the product p1 . . . pk where k 6 r. That is,

B(x; p1) counts the product n(n + 2) where n odd and p1 di-

vides the product. For example, B(20; 5) counts the products

3.5, 5.7, 14.15, 15.17. Using this notation, we have

U(x; y) =

[

x + 1

2

]

−
∑

i

B(x; pi)+
∑

i<j

B(x; pi.pj)−
∑

i<j<k

B(x; pi.pj.pk) . . .

+(−1)r.B(x; p1, . . . pr)

Some sort of counting tells us why the above expression is

true. By ρf we denote a product of f different prime factors
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taken from 3, 5, . . . , pr. Then

U(x; y) =

[

x + 1

2

]

+
r

∑

f=1

(−1)f
∑

ρf

B(x; ρf )

But calculating each and every term in the above expression

RHS is as difficult as counting the twin primes itself. So at

the cost of loosing the equality, we will try for an upper bound

for the LHS. We will break the sum at a suitably chosen index

f = m < r with m even. So,

U(x; y) <

[

x + 1

2

]

+
m

∑

f=1

(−1)f
∑

ρf

B(x; ρf ) (7.2)

Now we need an alternate exrpession for B(x; ρf ).

Lemma 7.3.1. Let ρ be an odd number and ν(ρ) the number

of its different prime factors. Then the number B(x; ρf ) of odd

numbers n 6 x for which n(n + 2) is divisble by ρ is

B(x; ρf ) = 2ν(ρ)

{

x

2ρ
+ θ

}

where θ 6 1 (7.3)

While prooving this result (see [2]), we see that θ is one of 0

or 1.
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Clubbing expressions (7.1), (7.2), and (7.3), we get

T (x) 6 r +
x

2

m
∑

f=0

(−1)f
∑

ρ(f)

2f

ρ(f)
+

m
∑

f=0

∑

ρ(f)

2f (7.4)

where when f = 0, ρ0 = 1 and ν(ρ(f)) = f .

7.4 Brun’s theorem: Second step

Let us estimate the last term in (7.4). Since ρ(f) runs through

all products of f prime factors, each taken from {3, 5, . . . , pr},

we have the last factor in the sum (7.4)

m
∑

f=0

∑

ρ(f)

2f =
m

∑

f=0

(

r

f

)

2f <
m

∑

f=0

(2r)f <
(2r)m+1

2r − 1
6 (2r)m+1

In the second sum,

m
∑

f=0

(−1)f
∑

ρ(f)

2f

ρ(f)
=

r
∑

f=0

(−1)f
∑

ρ(f)

2f

ρ(f)
−

r
∑

f=m+1

(−1)f
∑

ρ(f)

2f

ρ(f)
(7.5)

=
r

∏

j=1

(

1 − 2

pj

)

+
r

∑

f=m+1

(−1)f−1sf (7.6)
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Here sf =
∑

ρ(f)
2f

ρ(f) is the f th elementary symmetric function

of the quantities 2/3, 2/5, , . . . 2/pr. We finally have

T (x) 6
x

2

r
∏

j=1

(

1 − 2

pj

)

+
x

2

r
∑

f=m+1

(−1)fsf + (2r)m+1 (7.7)

Now

s1 =
2

3
+

2

5
+ . . . +

2

pr

= 2
∑

36p6y

1

p

. Here s1 depends on y.

Some more computations show that

T (x) 6 y + e−s1 + y9s1 (7.8)

7.5 Brun’s theorem: Third step

For y large enough, 2 log log y−B < s1 < 3 log log y for a suitable

positive B. Thus (7.8) becomes T (x) 6 y + eB x
(log y)2

+ y27 log log y

We will choose y 6 x1/2. Put y = xγ where 0 < γ 6 1/2. Then

T (x) < x1/2 + eB x
(γ log x)2

+ x27 log log x
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A choice of γ = 1
30 log log x

, x > 3 gives finally

T (x) < x1/2 + 900eBx

(

log log x

log x

)2

+ x9/10 (7.9)

Note that, for large x, the second summand will dominate the

other terms. So

T (x) < Cx

(

log log x

log x

)2

(7.10)

for some positive C. Now connect T with the twin prime count-

ing function to see that π2(x) 6 2T (x) because T (x) counts twin

prime pairs, not twin primes. So, most of the times (!) only one

twin prime is considered from such a pair.

7.6 Brun’s theorem: Final step

To find the sum of reciprocals, take a partial sum,

S(x) =
∑

p twin prime,p6x

1

p
=

∑

36n6x,n odd

1

n
(π2(n) − π2(n − 2))
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which turns out to be

∑

36n6∞

(log log n)2

n(log n)2

which is convergent. This series is supposed to converge apprx-

imately to B = 1.902160583104 as per computations made on

twin primes found up to 1.61015.

7.7 TPC: Current position

Though the conjecture is no way close to the conclusion, there

has been some progresses. The article by K. Soundararajan ([4])

is something which everybody interested in TPC should read.

The latest attempt to break TPC is the attempt after the most

noted result of the decade from Y. Zhang (See [6]). He proved

that, out of a certain number of numbers with difference 2, a few

of them are certainly primes. After that, there has been lot more

attempts by a team collaborated online under the codename

polymath (see [5]) project. Though there has been some closer

results, which improved Zhang’s results, TPC cannot be said to

be near the finishing point.
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An interconnection network connects the processors of a par-

allel and distributed system. The topological structure of an

interconnection network can be modeled by a connected graph

where the vertices represent components of the network and the

edges represent communication links between them. Efficiency

and reliability are two important criteria in the designing of a

good interconnection network. Some graph theoretic techniques

that are used to study the efficiency and reliability of a network

are discussed in [7, 8].

There are many network topological notions can be used to

study the efficiency and reliability of a network and (l, k) dom-

ination is an important notion among them. (l, k) dominat-

ing number is used to characterize the reliability of “resources-

sharing” in a network and has been recently studied in [9]. The

concepts of (l, k) domination arise from the study of parallel

routing fault tolerant systems. Due to wide spread demand for
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reliable and efficient networks, study of this parameter becomes

significant in any network system.

In a search for triangle-free graphs with arbitrarily large chro-

matic number, Mycielski developed an interesting graph trans-

formation known as the Mycielskian of a graph [2]. For a graph

G = (V,E), the Mycielskian of G is the graph µ(G) with ver-

tex set V ∪ V ′ ∪ {w}, where V ′ = {u′ : u ∈ V } and edge set

E ∪ {uv′ : uv ∈ E} ∪ {v′w : v′ ∈ V ′}. The vertex v′ is called the

twin of the vertex v and vice versa. The vertex w is called the

root of µ(G). For n > 2, µn(G) is defined iteratively by setting

µn(G) = µ(µn−1(G)).

In recent times, there has been an increasing interest in the

study of the Mycielskian of a graph. In[3], Fisher et al. studied

the Hamiltonicity and diameter of the Mycielskian and proved

that if G is hamiltonian, then so is µ(G) and diameter of µ(G)=

min(max(2, diam(G)), 4). Balakrishnan and Francis Raj deter-

mined the vertex connectivity and edge connectivity of Myciel-

skian in [1].



70 Chapter 8. (l, k) domination of the Mycielskian of a graph

Recently in [6], L.Guo et al. showed that for a connected

graph G with |V (G)| > 2, µ(G) is super connected if and only

if δ(G) < 2κ(G) and µ(G) is super edge connected if and only

if G ≇ K2. S. Francis Raj [4] investigated the vertex connec-

tivity and edge connectivity of the generalised mycielskian of

digraphs, which turned out to be a generalisation of the results

due to Guo and Guo [5]. The fact that Mycielskian is an opera-

tor that produces large ‘good’ networks with respect to diameter

and connectivity, makes it an interesting object to study the be-

haviour of the various topological notions .

In this paper, the (l, k) domination of the mycielskian of a

graph and its iterates is studied and is observed that the my-

cielskian preserves reliable resource sharing, an important char-

acteristic of a good network.
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Coimbatore - 641 018, Tamil Nadu, India. The Wiener index

is a distance-based topological index defined as half sum of the

distance between all pairs of vertices in a graph. If is a subset

of the vertex set of the given graph, then the Steiner distance of

is defined to be the number of edges in a minimally connected

sub graph of containing. The first Zagreb index is equal to the

sum of the squares of the degrees of the vertices, and the second

Zagreb index is equal to the sum of the products of the degrees

of pairs of adjacent vertices of the underlying molecular graph.

In this paper, Wiener index of Barbell graph is established. Also

the First and Second Zagreb Indices of Barbell Graph are also

obtained. AMS Classification: 05C15, 05C38,0340

Keywords: Barbell graph, Wiener polynomial, Wiener index,

Zagreb Index.



9.1. Introduction 75

9.1 Introduction

The Wiener Index is the first topological index to be used in

Chemistry. It was introduced in 1947 by Harold Wiener. Wiener

himself conceived W for acyclic molecules and defined it in a dif-

ferent manner. The definition of the Wiener Index in terms of

distances between vertices of a graph was first given by Hosoya.

Wiener index has many applications in Chemistry and Com-

munication Theory. Wiener showed that the Wiener Index is

closely correlated with the boiling points of Alkane molecules.

In his later work, he showed that it is also correlated with other

quantities including the parameters of its critical point, the den-

sity, surface tension and viscosities of its liquid phase and surface

area of the molecule[1].

In his paper (Hos, 1988), Hosoya used the name Wiener poly-

nomial while some other authors later used the name Hosoya

Polynomial (Diu,2002),(Ste,2001). It is well known that the first

derivative of the Hosoya Wiener Polynomial evaluated at x = 1

equals the Wiener Number. Higher derivatives of the Hosoya

wiener polynomial have also been used as descriptors [4].
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A topological index is a map from the set of chemical com-

pounds represented by molecular graphs to the set of real num-

bers. Let G be a simple graph. The first Zagreb index is equal

to the sum of the squares of the degrees of the vertices, and the

second Zagreb index is equal to the sum of the products of the

degrees of pairs of adjacent vertices of the underlying molecular

graph[3].

9.2 Preliminaries

For terminology and notation in this paper, we refer to [2].

The wiener index is the first topological index to be used in

Chemistry. It was introduced in 1947 by Harold Wiener. It is

defined as the sum of distances between all pairs of vertices of a

graph.

A topological index is a map from the set of chemical com-
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pounds represented by molecular graphs to the set of real num-

bers. Many topological indices are closely correlated with some

physico-chemical characteristics of the underlying compounds.

Let G be a simple graph. The first Zagreb index M1(G) and the

second Zagreb index M2(G) of G are defined in [7] respectively as

M1(G) =
∑

(d2
i )

M2(G) =
∑

(diXdj)

where di denotes the degree of the vertex vi in G.

9.3 Barbell Graph

In this section, the Barbell graph and its properties are given.

A n-barbell graph is the simple graph obtained by connect-

ing two copies of a complete graph Kn by a bridge and it is
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denoted by Bp, [8].

9.3.1 Properties of Barbell Graph

1. order of Bp = 2p

2. size of Bp = p(p − 1) + 1

3. radius of Bp = p

4. diameter of Bp = p + 1

5. eccentricity of Bp = p + 1

9.4 Wiener Index and Wiener Poly-

nomial of Barbell Graph

In this section, the Wiener Index and Wiener Polynomial of Bar-

bell graph Bp for any p are computed.
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Let G be the Barbell graph of order p where p > 3. Then the

Wiener index of the barbell graph Bp is W (Bp) = p3−p2+4p−3.

The Wiener index for Bp, p = 3, 4, 5 can be computed as

follows.

By virtue of definition of Wiener index, we get the following.

W (B3) = 27

W (B4) = 52

W (B5) = 85

W (B6) = 126

Proceeding like this, we observe that W (Bp) = p3 − p2 + 4p− 3.

The Wiener Polynomial of Bp for p = 3, 4, 5, 6... is given by

W (B3, x) = 4x3 + 4x2 + 7x

W (B4, x) = 9x3 + 6x2 + 13x

W (B5, x) = 16x3 + 8x2 + 21x

W (B6, x) = 25x3 + 10x2 + 31x

Proof. For Bp, for p = 3, there are 7 pairs of vertices contribut-

ing distance one to the graph, 4 pairs of vertices contributing

distance two to the graph and 4 pairs of vertices contributing dis-
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tance three to the graph. Therefore, W (B3, x) = 4x3 + 4x2 + 7x

For Bp, for p = 4, there are 13 pairs of vertices contribut-

ing distance one to the graph, 6 pairs of vertices contributing

distance two to the graph and 9 pairs of vertices contributing dis-

tance three to the graph. Therefore, W (B4, x) = 9x3+6x2+13x

For Bp, for p = 5, there are 21 pairs of vertices contributing dis-

tance one to the graph, 8 pairs of vertices contributing distance

two to the graph and 16 pairs of vertices contributing distance

three to the graph. Therefore W (B5, x) = 16x3 + 8x2 + 21x

For , Bp, for p = 6 there are 31 pairs of vertices contributing dis-

tance one to the graph,10 pairs of vertices contributing distance

two to the graph and 25 pairs of vertices contributing distance

three to the graph. Therefore, W (B6, x) = 25x3 + 10x2 + 31x

Similarly, a Wiener polynomial of Wp, p > 7 can be computed.

Also it can be generalised as W (Bp, x) = (p2 − p − 1)x + (2p −

2)x2 + p(p − 1)2x3.

First and Second Zagreb Indices of Barbell Graph

Proof. In this section, the First and second Zagreb Indices of
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Barbell Graph Bp, for p = 3, 4, 5, 6 are computed.

9.5 First Zagreb Index of Barbell Graph

Let Bp be the Barbell graph of order p, where p > 3 and the First

Zagreb index of the Barbell graph is M1(Bp) = 2[(p− 1)3 + p2]

Proof. The First Zagreb index of Bp for p > 3 can be computed

as follows.

By the definition of first Zagreb index, M1 =
∑

(δ(ui)
2). For B3,

4 vertices of B3 have degree 2 and 2 vertices of B3 have degree

3. For B4, 2 vertices of have degree 3 and 2 vertices of B4 have

degree 4. For B5, 8 vertices of B5 have degree 4 and 2 vertices

of have degree 5.

For any Barbell graph Bp, 2(p − 1) vertices of Bp have degree

p − 1 and 2 vertices of Bp have degree p.

The First Zagreb Index of B3, M1(B3) = 34. Therefore First Za-

greb Index can be calculated for different values of p. M1(B4) =

86, M1(B5) = 178, M1(B6) = 322.

Hence M1(Bp) =
∑

(δ(ui)
2) = 2[(p − 1)3 + p2].
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9.6 Second Zagreb Index of Barbell

Graph

Let Bp be the Barbell graph of order p > 3 and the Second

Zagreb index of the barbell graph is M2(Bp) = (p2−3p+2)[(p−

1)(p − 1)] + 1.p.p + (2p − 2)(p − 1.p).

Proof. The Second Zagreb index of Bp for p > 4 can be com-

puted as follows.

By the definition of Second Zagreb index, M2 =
∑

(didj).

The Barbell graph B3 has 4 edges with end vertices of degree 2

and 2, then the centre edge (bridge) of B3 has 1 edge with end

vertex of degree 3 and 3, then 4 edges with end vertices of degree

2 and 3. The Barbell graph B4 has 6 edges with end vertices of

degree 3 and 3, then the centre edge (bridge) of B4 has 1 edge

with end vertex of degree 4 and 4, then 6 edges with end vertices

of degree 3 and 4. The Barbell graph B5 has 12 edges with end

vertices of degree 4 and 4, then the centre edge (bridge) of B5

has 1 edge with end vertex of degree 5 and 5, then 8 edges with

end vertices of degree 3 and 4. Therefore the Barbell graph Bp,

has p2 − 3p + 2 edges with end vertices of degree (p − 1) and
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then the centre edge(bridge) of Bp has 1 edge with end vertices

of degree p and p, then (2p − 2) edges of Bp has end vertices of

degree p − 1 and p.

Therefore Second Zagreb Index can be calculated for different

values of p. M2(B3) = 41, M2(B4) = 142, M2(B5) = 285. Pro-

ceeding like this, we observe that

M2(Bp) = (p2 − 3p + 2)[(p − 1)(p − 1)] + 1.p.p + (2p − 2)((p −

1).p)

9.7 Conclusion

The Wiener Index and Wiener Polynomial of any Barbell graph

are computed in this paper. Also and the Zagreb Indices for

Barbell graph Bp, 3 6 p 6 6 has been computed. This work

would be extended to find the other indices of Barbell graph for

any p > 3 and the generalization could also be obtained.
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