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CHAPTER 1 

INTRODUCTION 

In mathematics, Graph Theory is the study of graph, which are 

mathematical structures used to model pair wise relations between objects. A 

graph is made up of set of objects called vertices which are connected by edges 

or arcs. A graph may be undirected, meaning that there is distinction between 

the two vertices associated with each edges, or its edges may be directed from 

one vertex to another graphs can be used to represent almost any problem 

involving discrete arrangements of objects, where concern is not with the 

internal properties of these objects but with the relationship among them. 

        Graph Theory was born in 1736 with Euler’s paper in which he solved 

Koningsberg bridge problem. After discovering of a subject which may be 

based on graphs, it took 200 years for the first book on Graph Theory to be 

published.  

If V(G)×V(G) is considered as a set of ordered pairs, where V be the 

vertex set of graph G, then the graph G is called a directed graph or digraph for 

short. We investigate most of the important and fundamental features of 

directed graphs. Applications of digraphs are virtually unlimited. 

  In the first chapter, we study digraph and its different types. Also 

introduced the topic relationship between binary relations and digraphs. Also 

introduce the topic tournaments. 

  In the second chapter, we introduce Euler digraph and matrix 

representation of digraphs. Third chapter is the concluding chapter of the project 

in which we discuss some of its applications. 
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CHAPTER-2 

INTRODUCTION TO DIGRAPHS 

2.1 DIGRAPHS 

  A Directed graph or digraph D= (V, A) consists of two finite sets V,  the 

vertex set, a non empty set of elements called the vertices of D and A, the arc  

set, a possibly empty set of elements called the arcs of D,  such that each arc 'a' 

in A is assigned an ordered pair of vertices (u, v). 

  As in case of undirected graphs, a vertex is represented by a point and an 

arc by a line segment between u and v with an arrow directed from u to v. Thus, 

for example fig 1.1 represents directed graph D with vertex set V= {v1, v2, v3, 

v4} and arc set A={a1, a2, a3, a4, a5, a6, a7}.  

      

If a is an arc, in the directed graph D, with associated ordered pair of 

vertices (u, v) then a is said to join u to v, u is called the origin or the initial 

vertex or the tail of a, and v is called the terminus or the terminal vertex or head 

of a.       
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An Arc for which initial and terminal vertices are the same forms a self 

loop and two directed graph edges are said to be parallel if they are mapped into 

the same ordered pair of the vertices. 

        Given a digraph D, we can obtain a graph G from D by "removing all 

arrows" from the arcs. This graph G has the same vertex set as D and 

corresponding to each arc a in D with associated ordered pair of vertices ( u, v),  

there is an edge e  in G with associated pair (u,  v),  the G is called underlying 

graph of D. 

2.2 TYPES OF DIGRAPHS 

Digraphs come in many varieties. In fact due to the choice of assigning a 

direction to each arc, directed graphs have more varieties than undirected one. 

1.Simple Digraphs 

Digraph that has no self loop or parallel edges is called a simple digraph. 

2. Asymmetric Digraphs 

Digraphs that have at most one directed edge between a pair of vertices 

but are allowed to have self-loops are called asymmetric or anti-symmetric 

digraphs.  

3. Symmetric Digraphs  

Digraphs in which for every arc (a, b)there is also an arc (b, a). Digraph 

that is both symmetric and simple is called a simple symmetric graph. 

Similarly a digraph that is both simple and asymmetric is simple asymmetric. 

4. Complete Digraphs  

A complete undirected graph was defined as a simple graph in which 

every vertex is joined to every other vertex exactly by one arc. 

a)Complete Symmetric Digraph  

A complete symmetric digraph is a simple digraph in which there is 

exactly one arc directed from every vertex to every other vertex. 
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b) Complete Asymmetric Digraph 

A complete asymmetric digraph is an asymmetric digraph in which there 

is exactly one arc between every pair of vertices. A complete asymmetric 

digraph of n vertices contains 
𝑛(𝑛−1)

2
arcs, but a complete symmetric digraph of n 

vertices contain n(n-1) arcs. 

2.3 DIGRAPHS AND BINARY RELATIONS 

The theory of graphs and the calculus of binary relations are closely 

related. In a set of objects X, where X= {𝑥1,𝑥2, … } , a binary relation 𝑅 between 

pairs (𝑥𝑖 , 𝑥𝑗) may exist. In which case, we write 𝑥𝑖𝑅𝑥𝑗 and say that 𝑥𝑖 has 

relation 𝑅 to𝑥𝑗. 

Relation 𝑅 may for instance be "is parallel to", “is congruent to” etc. A 

digraph is the most natural way of representing a binary relation on a set X. 

Each 𝑥𝑖 ∈X is represented by a vertex 𝑥𝑖. If 𝑥𝑖 has a specific relation 𝑅 to 𝑥𝑗, an 

arc is drawn from vertex 𝑥𝑖 to 𝑥𝑗, for every pair (𝑥𝑖 , 𝑥𝑗). Clearly, every binary 

relation on a finite set can be represented by a digraph without parallel edges. 

Conversely, every digraph without parallel edges defines a binary relation on a 

set of its vertices. 

1.Reflexive Relation 

  Let R define a relation on a non empty set X. If R relates every element 

of X to itself, the relation R is said to be reflexive. The digraph of a reflexive 

relation will have self loop at every vertex. Such a digraph representing a 

reflexive binary relation on its vertex set may be called a reflexive digraph. A 

digraph in which no vertex has self-loop is called an irreflexive digraph. 

2. Symmetric Relation  
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A relation R is said to be symmetric if for all𝑥𝑖; 𝑥𝑗 ∈ X, 𝑥𝑖𝑅𝑥𝑗implies 

𝑥𝑗𝑅𝑥𝑖. The digraph of a symmetric relation is a symmetric digraph because for 

every arc from vertex 𝑥𝑖to 𝑥𝑗there is an arc from 𝑥𝑗 to𝑥𝑖. 

3.Transitive Relation 

  A relation R is said to be transitive if for any three elements 

𝑥𝑖 , 𝑥𝑗 and𝑥𝑘 belongs to X, 𝑥𝑖𝑅𝑥𝑗 and 𝑥𝑗𝑅𝑥𝑘 always imply 𝑥𝑖𝑅𝑥𝑘. A digraph 

representing a transitive relation is called a transitive directed graph.  

4.Equivalence Relation  

A binary relation is called equivalence relation if it is reflexive, 

symmetric and transitive. The graph representing equivalence relation is called 

an equivalence graph.  

Isomorphic Digraphs 

Two digraphs are said to be isomorphic if their underlying graphs are 

isomorphic and the direction of the corresponding arcs are same.  

Two non isomorphic digraphs are shown. 
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Let D =(V, A) be a digraph. A digraph H = (U, B)is a subdigraph of D 

whenever U ⊆V and B ⊆A . If U = V, the subdigraph is said to be Spanning. 

Complement of a digraph 

  The complement 𝐷̅ = ( 𝑉, 𝐴 ̅) of the digraph D = (𝑉, 𝐴) has the vertex set 

V and 𝑎 ∈ 𝐴̅ if and only if 𝑎 not belongs to A. That is, 𝐷̅ is the relative 

complement of D in 𝐾𝑛 where |𝑉|= 𝑛. 

Converse of a digraph 

  The converse D’ = ( V, A’)of  the digraph D = (V, A) has vertex set V 

and 𝑎= 𝑢𝑣 ∈ 𝐴´ if andonly if a’ = vu ∈ A i.e., A’ is obtained by reversing the 

direction of each arc of D. Clearly (D’)’ = D’’ = D. 

A digraph D is self complementary if 𝐷 ≅ 𝐷̅ and D is said to be  self 

converse if D ≅ D’. A digraph D is said to be self-dual if 𝐷 ≅ 𝐷 ̅ ≅ 𝐷´. 

2.4 DIRECTED PATHS AND CONNECTEDNESS 

A directed walk in a digraph D = (V, A) is a sequence 𝑣0𝑎1𝑣1𝑎2…𝑎𝑘𝑣𝑘, 

where 𝑣𝑖 ∈ 𝑉 and 𝑎𝑖 ∈ 𝐴 are such that 𝑎𝑖 = 𝑣𝑖−1𝑣𝑖for 1≤𝑖≤𝑘, no arc being 

repeated.  

A directed path is an open walk in which no vertex is repeated. A directed 

cycle is a closed walk in which no vertex is repeated. 

A semiwalk is a sequence is a sequence 𝑣0𝑎1𝑣1𝑎2…𝑎𝑘𝑣𝑘 with 𝑣𝑖 ∈ 𝑉 

and 𝑎𝑖 ∈ 𝐴 such that either 𝑎𝑖 = 𝑣𝑖−1𝑣𝑖 or 𝑎𝑖𝑣𝑖𝑣𝑖−1 and no arc is repeated. The 

length of semiwalk is 𝑘. 

  A digraph D is said to be weakly connected or connected if its underlying 

graph is connected and it is said to be strongly connected if for any pair of 

vertices u and v in D, there is a directed path from u to v. That is, given any pair 

of vertices in D, each is reachable from the other. 
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Example for strongly connected digraph 

 

Given a graph G we can obtain a digraph from G by specifying for each edge in 

G an order to its end vertices. Such a digraph D is called an orientation of G. 

2.5 TOURNAMENTS 

     A tournament is an orientation of a complete graph. Therefore, in a 

tournament each pair of distinct vertices 𝑣𝑖 and 𝑣𝑗 is joined by one and only one 

of the orientation arcs (𝑣𝑖 , 𝑣𝑗) or (𝑣𝑗 , 𝑣𝑖). If the arc (𝑣𝑖 , 𝑣𝑗) is in T, then we say 

𝑣𝑖 dominates 𝑣𝑗 and is denoted by 𝑣𝑖 → 𝑣𝑗. 

Example for tournaments on four vertices

 

 

     The reason for the name ‟tournament” is that the digraph can be used to 

record the results of the games in a round robin tournament in any game in 
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which draws are not allowed, such as tennis. The arc from a to b then indicates 

that a has beaten b. 

Definition 

A triple in a tournament T is the sub digraph induced by any three 

vertices. A triple (𝑢, 𝑣, 𝑤) in T is said to be transitive if whenever (𝑢, 𝑣) ∈ 

A(𝑇) and (𝑣, 𝑤) ∈ A(𝑇), then (𝑢,𝑤) ∈ A(𝑇). That is, whenever 𝑢 → 𝑣 and 

𝑣 → 𝑤, then 𝑢 → 𝑤. 

Definition 

A bipartite tournament is an orientation of a complete bipartite graph. A 

k-partite tournament is an orientation of a complete k-partite graph. Figure 

below displays a bipartite and a tripartite tournament.  

 

THEOREM 

If v is a vertex having maximum out degree in the tournament T, then for every 

vertex w of T there is a directed path from v to w of length at most two. 

Proof 

Let T be a tournament with n vertices and let v be a vertex of maximum 

out degree in T. Let 𝑑⁺(𝑣) = 𝑚 and let 𝑣1, 𝑣2, … 𝑣𝑚 be the vertices in T such 

that there are arcs from 𝑣 to 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑚. Since T is a tournament, there are 

arcs from the remaining 𝑛 −𝑚 − 1 vertices, say 𝑢1, 𝑢2, … , 𝑢𝑛−𝑚−1 to 𝑣. That 

is, there are arcs from 𝑢𝑗 to 𝑣, 1 ≤ 𝑗≤𝑛 −𝑚 − 1. 
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Then for each 𝑖, 1 ≤ 𝑖 ≤ 𝑚, the arc from 𝑣 to 𝑣𝑖 gives a directed path of length 1 

from 𝑣 to 𝑣𝑖 . 

We now show that there is a directed path of length 2 from 𝑣 to 𝑢𝑗 from each 𝑗, 

1 ≤ 𝑗 ≤ 𝑛-𝑚-1. 

      Given such a vertex 𝑢𝑗, if there is an arc from 𝑣𝑖 to 𝑢𝑗 for some 𝑖, then 𝑣𝑣𝑖𝑢𝑗 

is a directed path of length 2 from 𝑣 to 𝑢𝑗. Now, let there be a vertex 𝑢𝑘, 1 ≤ 𝑘 ≤ 

𝑛-𝑚-1, such that no vertex 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑚, has an arc from 𝑣𝑖 to 𝑢𝑘. Since T is 

tournament, there is an arc from 𝑢𝑘 to each of the 𝑚 vertices 𝑣𝑖. Also, there is 

an arc from 𝑢𝑘 to 𝑣 and therefore 𝑑⁺(𝑢𝑘)≥ 𝑚+1. This contradicts the fact that 𝑣 

has maximum out degree with 𝑑⁺(𝑣) = 𝑚. Thus each 𝑢𝑗 must have an arc 

joining it from some 𝑣𝑖 and the proof is complete by using the directed path 

𝑣𝑣𝑖𝑢𝑗. 

Definition 

A directed Hamiltonian path of a digraph D is the directed path in D that 

includes every vertex of D exactly once.  

THEOREM 

Every tournament T has a directed Hamiltonian path. 
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Proof 

     Let T be a tournament with 𝑛 vertices. The proof is by mathematical 

induction on 𝑛. When 𝑛 = 1,2 or 3, result is trivially true. 

Let 𝑛 ≥ 4. Assume that the result is true for all tournaments with fewer than 𝑛 

vertices. Let 𝑣 be any vertex of T. Then T–𝑣 is a tournament with 𝑛-1 vertices 

and by induction hypothesis has a directed Hamiltonian path, say, P = 

𝑣1𝑣2…𝑣𝑛−1. 

     In case there is an arc from 𝑣 to 𝑣𝑖, then 𝑃1 = 𝑣𝑣1𝑣2… 𝑣𝑛−1 is a directed 

Hamiltonian path in T. Similarly, if there is an arc from 𝑣𝑛−1 to 𝑣, then 𝑃2 = 

𝑣1𝑣2…𝑣𝑛−1𝑣 is a directed Hamiltonian path in T. 

     Now, assume there is no arc from 𝑣𝑛−1 to 𝑣. Then there is at least one vertex 

𝑤 on the path 𝑃 with the property that there is an arc from 𝑤 to 𝑣 and 𝑤 is not 

𝑣𝑛−1. Let 𝑣𝑖 be the last vertex on 𝑃 having this property, so that the next vertex 

𝑣𝑖+1 does not have this property. Then there is an arc from 𝑣𝑖 to 𝑣 and an arc 

from 𝑣 to 𝑣𝑖+1. 
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Thus 𝑄 = 𝑣1𝑣2…𝑣𝑖𝑣𝑖+1𝑣𝑖+2…𝑣𝑛−1 is a directed Hamiltonian path in T. Hence 

the proof. 

Definition 

     A directed Hamiltonian cycle in a digraph D is a directed cycle which 

includes every vertex of D. If D contains such a cycle, then D is called 

Hamiltonian. 

THEOREM⦂1 

A strongly connected tournament T on 𝑛 vertices contains cycles of length 3, 4, 

… 𝑛. 

Proof 

     First we show that T contains a cycle of length three. Let 𝑣 be any vertex of 

T. Let W denote the set of all vertices 𝑤 of T for which  there is an arc from 𝑣 

to 𝑤. Let Z denote the set of all vertices 𝑧 of T for which there is an arc from 𝑧 

to 𝑣. We note that W∩Z = 𝜑, since T is a tournament. 

     Since T is strongly connected, W and Z are both nonempty. For, if W is 

empty , then there is no arc going out of , then there is no arc going out of 𝑣, 

which is impossible because T is strongly connected and some argument can be 

used for Z. Again, because T is strongly connected, there is an arc in T going 

from 𝑤 in W to some 𝑧 in Z. This gives the directed cycle 𝑣𝑤𝑧𝑣 of length 3. 
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We now use induction to finish the proof. Assume T has a cycle C of 

length 𝑘, where 𝑘 < 𝑛 and 𝑘 ≥ 3 and let this cycle be 𝑣1𝑣2… 𝑣𝑘𝑣1. We show 

that T has a cycle of length 𝑘+1. 

Let there be a vertex 𝑣 not on the cycle C, with the property that there is 

an arc from 𝑣 to 𝑣𝑖 and an arc from 𝑣𝑗 to 𝑣 for some 𝑣𝑖 , 𝑣𝑗 on C. Then there is a 

vertex 𝑣𝑖 on C with an arc of length 𝑘+1. 

 

If no vertex exists with the above property, then the set of vertices not 

contained in the cycle can be divided into two distinct sets W and Z, where W is 

the set of vertices 𝑤 such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘, there is an arc from 𝑣𝑖 to 𝑤 

and Z is the set of vertices 𝑧 such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘, there is an arc from 𝑧 

to 𝑣𝑖. If W is empty then the vertices of C and the vertices of Z together make 

up all the vertices in T. But, by definition of Z, there is no arc from a vertex on 

C to a vertex in Z, a contradiction, because T is strongly connected. Thus W is 
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nonempty. A similar argument shows that Z is nonempty. Again, since T is 

strongly connected, there is an arc from some 𝑤 in W to some 𝑧 in Z. Then 

𝐶1=𝑣1𝑤𝑧𝑣3𝑣4…𝑣𝑘𝑣1 is a cycle of length 𝑘+1. This complete the proof. 

THEOREM  

A tournament T is Hamiltonian if and only if it is strongly connected. 

Proof 

Let T have 𝑛 vertices. If T is strongly connected, then by theorem-1, T 

has a cycle of length 𝑛. Such a cycle is Hamiltonian cycle, since it includes 

every vertex of T. Hence T is Hamiltonian. 

Conversely, let T be Hamiltonian with Hamiltonian cycle, 

C=𝑣1𝑣2…𝑣𝑛𝑣1. Then given any 𝑣𝑖 , 𝑣𝑗 with 𝑖 ≥ 𝑗, in the vertex set of T, 

𝑣𝑗𝑣𝑗+1…𝑣𝑖 is a path 𝑃1 from 𝑣𝑗 to 𝑣𝑖 while 𝑣𝑖𝑣𝑖+1…𝑣𝑛−1𝑣𝑛𝑣1…𝑣𝑗−1𝑣𝑗 is a 

path 𝑃2 from 𝑣𝑖 to 𝑣𝑗.Hence the proof. 
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CHAPTER - 3 

 MORE ON DIGRAPHS 

 

3.1 EULER DIGRAPHS 

The notion of the Euler graph can be extended to digraphs also .In a 

digraph G a closed directed walk (i.e, a directed walk that starts and ends at the 

same vertex ) which traverses every edge of G exactly once is called a directed 

Euler line .A digraph containing a directed Euler line is called an Euler 

digraph. 

Example: 

 

This is an Euler digraph, in which the walk 𝑎𝑏𝑐𝑑𝑒𝑓 is an Euler line. 

The digraph must be connected, with the possible exception isolated 

vertices, otherwise every edge can’t be traversed in one walk. In fact, an Euler 
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digraph must be strongly connected, although every strongly connected digraph 

need not be an Euler digraph.  

THEOREM  

A digraph D = ( V , A ) is  Eulerian if and only if D is connected and for  each 

of it’s vertices V ,d⁻(v) = d⁺(v) 

Proof:-  

Necessary part  

Let D be an Eulerian digraph. Therefore it contains an Eulerian walk, say 

W. In traversing W, every time a vertex v is encountered. We pass along an arc 

incident towards v and then an arc incident away from v. This is true for all the 

vertices of W, including the initial vertex of W,say v because we began W by 

traversing an arc incident away from v and ended W by traversing an arc 

incident towards v. 

Sufficient part  

Let for every vertex in D, d⁻(v)=d⁺(v) . For an arbitrary vertex v in D, we 

identify a walk, starting at v and traversing the arcs of D at most once each. This 

traversing is continued till it is impossible to traverse further.Since every vertex 

has the same number of arcs incident towards it as away from it. We can leave 

any vertex that we enter along the walk and the traversal then stops at v. Let the 

walk traversed so far be denoted by W .If W includes all the arcs of A, then the 

result follows. If, not we remove from D all the arcs directed and consider the 

remainder of A. By assumption, each vertex in the remaining digraph, say D, is 

such that the number of arcs directed towards it equals the number of arcs 

directed away from it. Further, W and D, have a vertex, say u in common. Since 

D is connected starting at u, we repeat the process of tracing a walk in 𝐷1 . If 

this walk does not contain all the arcs of𝐷1, the process is repeated until a 

closed walk that traverses each of the arcs of D exactly once is obtained. 
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Hence D is Eulerian. 

THEOREM 

A non trivial weak digraph is an isograph if and only if it is the union of arc-

disjoint cycles. 

Proof:- 

  If the weak digraph D is a union of arc-disjoint cycles each cycle 

contributes one to the in degree and one to the out degree of each vertex on it. 

Thus d⁺(v)=d⁻(v) ,for all v ∈ V.  

         Conversely, let D be a non trivial weak isograph. Then each vertex has 

positive out degree and therefore D has a cycle, say Z. Removing the edges of Z 

from D, we get a digraph 𝐷1, whose weak components are isographs. By using 

an induction argument, each such nontrivial weak component is a union of arc 

disjoint cycles. These cycles together with Z provide a decomposition of the arc 

set of D in to cycles. 

COROLLARY 

Every weak isograph is strong. 

Proof:- 

  If u and v are any two vertices of the weak isograph D, there is a semi 

path P joining u and v and each arc of this lies on some cycle of D . The union 

of these cycles provides a closed walk containing u and v. This u and v are 

mutually reachable. 

3.2 MATRICES A,B AND C OF DIGRAPHS 

The matrices associated with a digraph are almost similar to those 

discussed for an undirected graph, with the difference that in matrices of 

diagraphs consist of 1,0,-1 instead of only 0 and 1 for undirected graphs . The 

numbers 1,0,-1 are real numbers and their addition and multiplication are 
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interpreted as in ordinary arithmetic, not modulo 2 arithmetic as in undirected 

graphs. Thus the vectors and vector spaces associated with a digraph and it’s 

sub digraphs are over the field of all real numbers, but not modulo 2. 

INCIDENCE MATRIX 

The incidence matrix of a digraph with 𝑛 vertices, 𝑒 edges and no self 

loops is an 𝑛 ×𝑚  matrix A, A=[𝑎𝑖𝑗], whose rows correspond to vertices and 

columns correspond to edges such that 

𝑎𝑖𝑗={

1 , 𝑖𝑓 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑢𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥

−1, 𝑖𝑓 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛𝑡𝑜 𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 

0, 𝑖𝑓 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑛 𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥

} 

For example, consider the digraph  

 

The incidence matrix is given by 
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       Since the sum of each column is zero, the rank of the incidence matrix of a 

digraph of n vertices is less than n. 

 

THEOREM 

If A(G) is the incidence matrix of a connected digraph of n vertices, the rank of 

A(G)= n – 1 

Proof:- 

 Deleting any one row from A we get𝐴𝑓,the  n – 1 by reduced incidence 

matrix . The vertex corresponding to the deleted row is called the reference 

vertex . 

If A is incidence matrix of an undirected graph, the determinant was 

defined in modulo 2 arithmetic and therefore, could have no other value. In the 

case of diagraphs, the incidence matrix A is in the real field, and on first sight it 

would appear that the determinants of its square submatrices could acquire any 

integral value. 

UNIMODULAR MATRIX  

A matrix is said to be unimodular if the determinant of its every square 

matrix is -1,0 or 1 . 

CYCLE MATRIX OF A DIGRAPH 

Let G be a graph with e edges and q cycles (directed cycles or semi 

cycles). An arbitrary orientation (clockwise or counter clockwise) is assigned to 

each of the cycles q . Then a cycle matrix B= [𝑏𝑖𝑗] of the digraph G is a q×e 

matrix defined as 
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𝑏𝑖𝑗=

{
 
 

 
 
1 , 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑦𝑐𝑙𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 
𝑜𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒                                              

−1 , 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑦𝑐𝑙𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑎𝑟𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒                                                         

0 , 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑦𝑐𝑙𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒                        }
 
 

 
 

 

 

Eg:-Consider the digraph D in fig  

 

One cycle of matrix D is 

            a    b   c   d    e     f    g   h 

A =    



















−

−−−

−

00000011

00111100

01010100

01101000

 

     The cycle in the first row is assigned clockwise orientation, in the second 

row counter clockwise, in the third row counter clockwise and in the fourth 

clockwise. Changing the orientation of any cycle will simply change the sign of 

every non zero entry in the corresponding row. Also we observe that if the row 

is subtracted from second, the third is obtained. Thus the rows are not all 

linearly independent. 
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SIGN OF A SPANNING TREE 

For a digraph, the determinant of the non singular submatrix of A 

corresponding to a spanning tree T has a value either 1 or -1 .This is referred to 

as sign of T. 

The sign of a spanned tree is defined only for a particular ordering of 

vertices and edges in A, because interchanging two rows and columns in a 

matrix changes the sign of its determinant. Thus the sign of a spanning tree is 

relative. Once the sign of one spanning tree is arbitrarily chosen, the sign of 

every other spanning tree is determined as positive or negative with respect to 

this spanning tree. 

FUNDAMENTAL CYCLE OF MATRIX  

The M fundamental cycles each formed by a chord with respect to some 

specified spanning tree, define a fundamental cycle matrix B, for a digraph. The 

orientation assigned to each of the fundamental cycles is chosen to coincide 

with that of the chord. Therefore, 𝐵𝑓a 𝜇×m matrix can be expressed exactly in 

the same form as in the case of an undirected graph. 

𝐵𝑓= [𝐼𝜇: 𝐵𝑡]  , where 𝐼𝜇 is the identity matrix of order M and the columns of 𝐵𝑡 

corresponds to the edges in a spanning tree. 
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                 b   d   g    a     c     e    f    h 

Here 𝐵𝑓=

















−

−

−

00110100

01110010

00001001

 =[𝐼𝜇: 𝐵𝑡] 

 

CUT-SET MATRIX  

Let D= (V,A) be a connected digraph with q cut sets. The cut-set matrix 

C=[𝑐𝑖𝑗] of D is a q×m matrix in which the rows corresponds to the cut-sets of D 

and the columns to the edges of D. Each cut-sets given an arbitrary orientation. 

Let 𝑅𝑖 be the 𝑖𝑡ℎ  cut –set of D and 𝑅𝑖 partition V into non empty vertex sets 

𝑣𝑖a̍nd 𝑣𝑖 ̎. The orientation can be defined to be either from 𝑣𝑖̍to 𝑣𝑖  ̎  or from 𝑣𝑖  ̎

to𝑣𝑖  ̍ . Suppose the orientation is chosen to be from. Then the orientation of an 

edge of aj cut-set isRisaid to be the same as that of Riif ajis of the form𝑣𝑎𝑣𝑏, 

where 𝑣𝑎 ∈ 𝑣𝑏 ̍and 𝑣𝑏 ∈ 𝑣𝑖”and opposite, otherwise . Then, 

𝑐𝑖𝑗 = {

1 , if  an edge aj of cut − set Ri has the same orientation as Ri
−1, if edge aj has the opposite orientation to Ri               

0, otherwise                                                                                            

} 

 

SEMI-PATH MATRIX  

The semi-path matrix  P(u,v) = [𝑝𝑖𝑗] of a digraph D=( V ,A ) where u, v 

∈V , is the matrix with each row representing a distinct semi-path from u to v 

and the columns representing the arcs of D, in which 𝑝𝑖𝑗=1 if the 𝑖𝑡ℎ semi-path 

contains the 𝑗𝑡ℎ edge ,𝑝𝑖𝑗 = -1 if the semi-path contains the converse of the 𝑗𝑡ℎ  

edge and 𝑝𝑖𝑗 =0 otherwise .  
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The matrix P (𝑉3, 𝑉5 ) for the digraph of above figure  

 

      𝑎1 𝑎2 𝑟𝑎3  𝑎4  𝑎5 𝑎6 

                             P ( 𝑉3, 𝑉5) = 
















−

101001

010010

000100

 

ADJACENCY MATRIX OF A DIGRAPH 

Let G be a digraph with n vertices and with no parallel edges. The 

adjacency matrix X = [𝑥𝑖𝑗] of the digraph G is an n×n ( 0,-1 ) matrix defined by, 

𝑥𝑖𝑗= {
1 , if there is an edge from ith vertex to jth vertex
0, otherwise                                                                    

} 

Eg:- Consider the figure   
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The adjacency matrix of D is  
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CHAPTER – 4 

APPLICATIONS 

 
        The concept of digraph (or directed graphs) is one of the richest theories in 

graph theory, mainly because of their applications to physical problems. For 

example, the street map of a city with one-way streets, Flow networks with 

values in the pipes, and electrical networks are represented by directed graphs. 

Directed graphs are employed in abstract representation of computer programs, 

where the vertices stand for the programs instructions and the edges specify the 

execution sequence. The directed graph is an invaluable tool in the study of 

sequential machines. Directed graphs in the form of signal flow graphs are used 

for system analysis in control theory.  

         Digraphs under the name sociograms have been used to represent 

relationships among individuals in a society (or group). Members are 

represented by vertices and the relationship by anthropologists and are classified 

according to their kinship structures.  

          The concept of directed graphs have become a legitimate and very useful 

area of operational research (OR). As OR is being applied to more and more 

problems of society, it is apparent that digraphs models and algorithms have the 

potential to be of great use in the social sciences. The three important classes of 

problems in combinational operations research transportation problems, activity 

networks and game theory can be expressed and solved elegantly as graph 

theory problems involving connected and weighted digraphs.  

IN GAME THEORY 

        The theory of game has become an important field of mathematical 

research since the publication of the first book on the subject by John von 
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Neumann and Oskar Morgenstern in 1944.Game theory is applied to problems 

in engineering, economics and war science to find the optimal way of 

performing certain tasks in a competitive environment. The general idea of 

game theory is the same as the one we associate with parlor game such as Chess 

bridge and checkers  

            Simplified Nim: 2 piles of sticks are given and players A and B take 

turns each taking any number of sticks from any one pile. The player who takes 

the last stick win and since the finite quantity of sticks will eventually be 

exhausted it is obvious that the game allows no draw. As a further 

simplification, let as start with two piles containing two sticks each. The 

complete game is described by the digraph. Each state of the game is described 

by an ordered pair of labels (x, V), indicating the number of sticks in the first 

and the second pile, respectively. 

 

 

1. The digraph has a unique vertex with a zero in-degree. This vertex represents 

the starting position in the game and is therefore called the starting vertex. 

Vertex (2, 2)   

2. There are one or more vertices with zero out-degree. 1hese correspond to the 

closing positions in the game, and are called the closing vertices Vertex (0, 0)   
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3.A game digraph is a connected, acyclic digraph. A directed circuit would 

imply that the game could go on indefinitely.   

Each directed path from the starting vertex to a closing vertex represents 

one complete play of the game. This path consists of edges representing the 

moves of the two players alternately. 

  Let us call a position "won" if the player who brought the game to this 

position Can force a victory. Conversely, a position is dubbed "lost if the player 

who brought the game to this position can be forced to lose.  the closing vertex 

marked as won, because the player who brought the game to this position is the 

winner. Having marked this vertex as won, let us use the following procedure to 

mark the remaining vertices as won or lost. Mark an unmarked vertex won if all 

its successors are marked lost, and mark an unmarked vertex lost if at least one 

of its successors is marked won. This results in vertices (0, 0), (1, 1), and (2, 2) 

being marked as won and the remaining as lost. And thus the player who makes 

the second move has the Winning strategy,  Since he can force his opponent to 

move to the vertices marked as lost.  

SIGNAL-FLOW GRAPHS  

         Most problems in analysis of a linear system are eventually reduced to 

solving a set of simultaneous, linear algebraic equations. This problem usually 

solved by matrix methods, can also be solved via graph theory. The graph-

theoretic approach is often faster, and, more importantly, it displays cause-effect 

relationships between the variables-something totally obscured the matrix 

approach. This graph-theoretic analysis of a linear system consists of two parts: 

(1) constructing a labeled, weighted digraph called the graph, and (2) solving tor 

the required dependent variable from the signal-flow graph.  

  In a signal-flow graph each vertex represents a variable and is labeled so. 

A directed edge from 𝑥𝑖  to 𝑥𝑗 Implies that variable 𝑥𝑖 depends on variable𝑥𝑗. 
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The coefficients in the equations are assigned as the weights of the edges Such 

that the variable 𝑥𝑘 is equal to the sum of all products 𝑊𝑖𝑘𝑥𝑖 where 𝑊𝑖𝑘  is the 

weight of the edge coming into 𝑥𝑘 from𝑥𝑖.As an example, let us construct a 

signal-flow graph for the system given by the set of three equations,  

{C11X1+C12X2+C13X3=Y1  

C21X1+C22X2+C23X3=

Y2 

C31X1+C32X2+C33X3=

Y3} –(a) which can be 

rewritten as  

{(C11+1)X1+C12X2+C13X3-Y1=X1  

C21X1+(C22+1)X2+C23X3-Y2=X2  

C31X1+C32X2+(C33+1)X3-Y3=X3} –(b) 

The graph representing equation- (a) 

 

 

THEOREM  

The weight matrix W=[𝑤𝑖𝑗] of the signal-flow graph corresponding to equation 

(c) is given by  
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W = [
𝒄 + 𝟏 −𝟏
𝟎 𝟎

]   equation. [d]  

 

where 1 is the identity matrix of the same order as C, and the superscript T 

denotes the transposed matrix. Although signal-flow graphs can always be 

constructed from a set of equation in many physical problems, particularly in 

electrical systems signal-flow graphs are drawn directly without first writing the 

equations. Usually, a signal-flow graph can be drawn as easily as the equations 

are formulated. Also, writing equation from a signal-flow graph is a Simple 

matter, because each vertex 𝑋𝑘represents one equation or the system in which 

𝑋𝑘  is equal to the sum of the products of weights of all incoming edges and the 

labels of the initial vertices of these edges  

 

𝑥1 = 𝑦1 + 𝑎𝑥2 + 𝑑𝑥3 

𝑥2 = 𝑏𝑥1 + 𝑓𝑥2 

𝑥3 = 𝑐𝑥1 + 𝑒𝑥2 + 𝑔𝑥4 

𝑥4 = ℎ𝑥3 + 𝑗𝑥5 + 𝑦4 
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𝑥5 = 𝑖𝑥4 

These can be rewritten in the same form as equ(𝑐) 

       C = 























−

−−

−−−

−−

−−

1000

100

01

00011

001

i

jh

gec

f

da

 

 

             X = 























5

4

3

2

1

x

x

x

x

x

        and   Y = 























0

4

0

0

1

y

y

 

 

REDUCTION OF SIGNAL FLOW GRAPH 

The signal –flow graph method of analysis Is most useful when we want 

to solve for only one Unknown variable, say R J, as a function of one 

Independent variable say Y K we solve by eliminating All other vertices one by 

one taking care that this Elimination process does not alter the net product Of 

the edge weights of directed paths from YK to R j this graph reduction 

corresponds exactly to The algebras method of eliminating all other variable by 

systematic substitution.   
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Although our ability to reduce the digraph by simple inspection adds much to 

the power and flexibility of signal-flow graphs, it is often better to use a more 

methodical technique that does not depend on visual inspection. And such a 

method is provided by Mason's gain formula.  
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CONCLUSION 
 

Most of the important and fundamental features of directed graphs were 

investigated in this project. We saw that there are two different aspects of 

digraphs: one in which their properties are similar to those of undirected graphs 

and second aspect have properties altogether different from those of undirected 

graphs. The close relationship between binary relations and digraphs was 

explored. Also studies on Euler digraphs, tournaments and matrix representation 

of digraphs are included applications of digraphs are virtually unlimited. 
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