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INTRODUCTION 

 

Modern information technologies require innovations that are based 

on Modeling, analyzing, designing and finally implementing new systems. 

The whole developing process assumes a well organized team work of 

experts including engineers, computer scientists, mathematicians, physicist 

just to mention some of them. Queuing theory is one of the most commonly 

used mathematical tools for the performance evaluation of complex systems. 

Queuing theory is the mathematical study of queues or waiting in 

lines. Queue contains customers or items such as people or information. 

Queue forms where there are limited resources for providing a service. 

                            Waiting for service is a part of our life. We wait to eat in 

restaurant, we queue up at checkout counter in the grocery store, we line for 

service in post office and so on. And the waiting phenomenon is not an 

experience limited to human beings only. Jobs waiting to be proceeded on a 

machine, plane circle in the stack before given permission to land on an 

airport and car stops at traffic lights… Waiting cannot be eliminated 

completely without incurring inordinate expense and the goal is to reduce 

its adverse impact to ‘tolerable levels’. 

 The queuing theory owes its developments to A.K Erlang. He, in 1903, took 

up the problem on congestion of telephone traffic. A.K Erlang directed his 

first efforts at finding the delay for one operator and later on the results were 

extended to find the delay for several operators. 

 A basic queuing system consist of an arrival process, howcustomers 

arrive at the queue, how many costumers are present  in total, the queue 

itself, the service process for attending to those customers and departure 

from the system. Mathematical queuing model are often used in software 

and business to determine the best way of using limited resources. 



                            The study of queue deals with quantifying the phenomenon 

of waiting in lines using representative measures of performance, such as 

average queue length, average waiting time in queue and average facility 

utilization. 

Queuing theory is concerned with the statistical description of the 

behaviors of queues. The queuing system can be described by the input (or 

arrival pattern), the service mechanism (or service pattern), the queue 

discipline and customers behavior. In a specified queuing system, the 

problem is to determine the probability distribution of queue length, 

probability distribution of waiting time of customers and the busy period 

distribution. A queuing model is specified completely by the following six 

main characteristics: 

1) Input or arrival(inter-arrival) distribution 

2) Output or departure(service) distribution 

3) Service channels 

4) Service discipline 

5) Maximum number of customers allowed in the system 

6) Calling source or population 

 

 

 

 

 

 

 

 

 



CHAPTER – 1 

ELEMENTS OF A QUEUING MODEL  

 

CUSTOMERS AND SERVER 

The principle actors in queuing situations are the customers and the server. 

Customers are generated from a source. On arrival at the facility, they can 

start service immediately or wait in queue if the facility is busy. When a 

facility completes a service, it automatically pulls a waiting customer, if any, 

from the queue. If the queue is empty, the facility becomes idle until a new 

customer arrives. 

 From the viewpoint of analyzing queues, the arrival process is 

represented by the interarrival time between successive customers, and the 

service is described by the service time per customer. Generally, the 

interarrival and the service can be probabilistic as in case of a Post Office or 

deterministic as in the arrival of applications for job interviews. 

 

QUEUE SIZE 

 Queue size plays a role in the analysis of queues, and it may have a finite 

size as in the buffer area between two successive machines, or it may be 

infinite as in mail order facility.  

 

QUEUE DISCIPLINE 



                               Queue discipline, which represents the order in which 

customers are selected from a queue, is an important factor in the analysis of 

queuing models. The most common discipline is [First Come First Served-

FCFS] other disciplines includes [Last Come First Served-LCFS] and [Service 

In Random Order-SIRO].Customers are also selected from the queue based 

on some order of priority.  

 

FINITE SOURCE AND INFINITE SOURCE 

The source from which customers are generated may be finite or infinite. A 

finite source limits the customers arriving for services. An infinite source is 

forever abandoned. 

                                Varying the elements of a queuing situation give rise to a 

variety of queuing models. 

 

Queuing theory can be used to determine the level of service that balances 

the following two conflicting costs. 

1) Cost of offering the service 

2) Cost incurred due to the delay in offering the service. 

          The first cost is associated with the service facilities and their 

operation. And the second represent the cost of customer’s waiting time. 

We know that an increase in the existing service facilities would reduce the 

customer’s waiting time. That is an increase (or decrease) in the level of 

service increases (or decreases) the cost of operating service facilities and 

decreases (or increases) the cost of waiting. The optimum service level is 

one that minimizes the sum of two costs. 

 The following figure illustrates both types of cost as a function of 

level of service. 



 

 

 

 

 



 

CHAPTER 2 

PROBABILITY DISTRIBUTION IN 

QUEUING SYSTEMS 

 

ROLE OF EXPONENTIALDISTRIBUTION 

In most queuing situations, the arrival of customers occurs in a totally 

random fashion. Randomness here means that the occurrence of an event 

(e.g., arrival of a customer or completion of a service) is not influenced by 

the length of time that has elapsed since the occurrence of the last event. 

    Random interarrival and service times are described quantitatively in 

queuing models by the exponential distribution, which is defined as 

                f(t)= λe- λt , t>0   

For the exponential distribution, 

                E(t)=
1

𝜆
 

                P(t≤T)=∫ 𝜆
𝑇

0
e-λtdt 

                         =1-e-λT 

The definition of E{t} shows that λ is the rate per unit time at which events 

(arrivals or departures) are generated. The fact that the exponential 

distribution is completely random is illustrated by the following example. If 

the time now is 8:20 A.M. and the last arrival has occurred at 8:02 AM,  the 

probability that the next arrival will occur by 8:29 is a function of the interval 



from 8:20 to 8:29 only, and is totally independent of the length of time that 

has elapsed since the occurrence of the last event (8:02 to 8:20). This result is 

referred to as the forgetfulness or lack of memory of the exponential. 

Let the exponential distribution, f(t), represent the time, t , between 

successive events. If S is the interval since the occurrence of the last event, 

then the forgetfulness property implies that 

                 P(t>T+S|t>S)=P(t>T) 

To prove this result, we note that for the exponential with mean 1/λ, 

                 P(t>Y)=1-P(t<Y)=e-λY 

Thus, 

 P(t>T+S|t>S) =  
𝑃(𝑡 > 𝑇+𝑆 ,𝑡 > 𝑆)

𝑃(𝑡 > 𝑆)
 = 

𝑃(𝑡 > 𝑇+𝑆)

𝑃(𝑡 > 𝑆)
 

                         = 
𝑒−𝜆(𝑇+𝑆)

𝑒−𝜆𝑆
  = 𝑒−𝜆𝑇=  P(t>T)  

 

PURE BIRTH AND DEATH MODELS 

(RELATIONSHIP BETWEEN THE 

EXPONENTIAL AND POISSON 

DISTRIBUTIONS) 

This section presents two queuing situations: the pure birth model in 

which arrivals only are allowed, and the pure death model in which 

departures only can take place. An example of the pure birth model is the 

creation of birth certificates for newly born babies. The pure death model 

may be demonstrated by the random withdrawal of a stocked item in a store. 

The exponential distribution is used to describe the interarrival time in 

the pure birth model and the interdeparture time in the pure death model. 



A by-product of the development of the two models is to show the close 

relationship between the exponential and the Poisson distributions, in the 

sense that one distribution automatically defines the other 

 It is assumed that customers joining the queuing system arrived in 

random manner and follow a Poisson distribution and the inter arrival 

time follows exponential distribution. In most of the cases, service time is 

also assumed to be exponentially distributed. It implies that the probability 

of service completion in any short time period is constant. And it is 

independent of length of time that the service has been in progress.  

 The probability distributions in queuing systems are based on the 

following axioms: 

 A1) The number of arrivals on non overlapping intervals are 

statistically independent. 

 A2) The probability of more than one arrival between time t 

and(𝑡 + 𝛥𝑡)is O(𝛥𝑡) where O(𝛥𝑡)is negligible. 

That is the probability of two or more arrivals in small time intervalΔt is 

negligible. Thus𝑃0(𝛥𝑡) + 𝑃1(𝛥𝑡) +  O(𝛥𝑡) = 1 

 A3) The probability that an arrival occur between t and(𝑡 + 𝛥𝑡)is 

    𝑃1(𝛥𝑡) = 𝜆𝛥𝑡 + O(𝛥𝑡) 

Where λ is a constant independent of the total number of arrivals upto time 

t, Δt is time interval and 

lim
𝛥𝑡→0

O(𝛥𝑡)

𝛥𝑡
= 0 

 

 

 



PURE BIRTH MODEL 

 

The model in which only arrivals are counted and no departure takes place 

are called pure birth model. 

Define,  

 Po(t)= Probability of no arrivals during a period of 

             time t  

Given that the interarrival time is exponential and that the arrival rate is  λ 

customers per unit time, then 

po(t)= P{interarrival time ≥ t} 

       =1- P{interarrival time ≤ t} 

       = 1 - (1 -e-λt) 

       = e-λt 

For a sufficiently a small time interval h > 0, we have 

po(h)= e-λh = 1- λh +
(𝜆ℎ)2

2!
 - ... 

                      = 1 - λh + 0(h2) 

 

The exponential distribution is based on the assumption that during h > 0, 

at most one event (arrival) can occur. Thus, as h → 0, 

                          p1(h) = 1 - po(h) ≈λh 

 



This result shows that the probability of an arrival during h is directly 

proportional to h, with the arrival rate, λ, being the constant of 

proportionality. 

To derive the distribution of the number of arrivals during a period t when 

the interarrival time is exponential with mean 
1 

𝜆
, define 

pn(t) = Probability of n arrivals during t 

 

For a sufficiently small h > 0, 

pn(t + h) ≈pn(t)(1 - λh) + pn-1(t)λh, n > 0 

po(t + h) ≈ po(t)(1 - λh)                   , n = 0 

 

In the first equation, n arrivals will be realized during t + h if there are n 

arrivals during t and no arrivals during h, or n-1 arrivals during t and one 

arrival during h. All other combinations are not allowed because, according 

to the exponential distribution, at most one arrival can occur during a very 

small period h. The product law of probability is applicable to the right-hand 

side of the equation because arrivals are independent. For the second 

equation, zero arrivals during t + h can occur only if no arrivals occur during 

t and h. 

Rearranging the terms and taking the limits as h →0, we get 

p'
n(t) = limh→0

𝑃𝑛(𝑡+ℎ)−𝑃𝑛(𝑡)

ℎ
=  -λpn(t) + λpn-1(t), n > 0 

p'
o(t) = limh→0

𝑃0(𝑡−ℎ)−𝑃0(𝑡)

ℎ
= -λpo(t),n=0 

 

where p'
n(t) is the first derivative of pn(t) with respect to t. 



The solution of the preceding difference-differential equations yields 

pn(t) =
(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
 , n = 0,1,2, .... 

This is a Poisson distribution with mean E(n|t) = λt arrivals during t 

The preceding result shows that if the time between arrivals is exponential 

with mean 
1

𝜆
then the number of arrivals during a specific period t is poisson 

with mean λt.The converse is true also. 

 

Pure Death Model 

In the pure death model, the system starts with N customers at time 0 and 

non a new arrivals are allowed. Departures occur at the rate μ customers 

per unit time. To develop the difference-differential equations for the 

probability pn(t) of n customers remaining after t time units, we follow the 

arguments used with the pure birth model. Thus, 

𝑃𝑁(𝑡 + ∆𝑡) = 𝑃𝑁(𝑡)(1 − 𝜇∆𝑡) 

𝑃𝑛(𝑡 + ∆𝑡) = 𝑃𝑛(𝑡)(1 − 𝜇∆𝑡) + 𝑃𝑛+1(𝑡)𝜇∆𝑡, 0 < 𝑛 < 𝑁 

𝑃0(𝑡 + ∆𝑡) = 𝑃0(𝑡)(1) + 𝑃1(𝑡)𝜇∆𝑡 

 

As Δt→ 0, we get 

 𝑃𝑁
′ (𝑡) = −𝜇𝑃𝑁(𝑡) 

𝑃𝑛
′(𝑡) = −𝜇𝑃𝑛(𝑡) + 𝜇𝑃𝑛+1(𝑡), 0 < 𝑛 < 𝑁 

𝑃0
′(𝑡) = 𝜇𝑃1(𝑡) 

The solution for these equations yields the following Truncated Poisson 

distribution: 



𝑃𝑛(𝑡) =
(𝜇𝑡)𝑁−𝑛𝑒−𝜇𝑡

(𝑁 − 𝑛)!
, 𝑛 = 1,2,3… . . 𝑁 

                   𝑃0(𝑡) = 1 −∑𝑃𝑛(𝑡)

𝑁

𝑛=1

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

GENERALIZED POISSON QUEUING 

MODEL 

 

This section develops a general queuing model that combines both 

arrivals and departures based on the Poisson assumptions-that is, the 

interarrival and the service times follow the exponential distribution. 

     The development of the generalized model is based on the long-run or 

steady-state behavior of the queuing situation, which is achieved after the 

system has been in operation for a sufficiently long time. This type of 

analysis contrasts with the transient (or warmup) behavior that prevails 

during the early operation of the system.  

      The generalized model assumes that both the arrival and departure rates 

are state dependent, meaning that they depend on the number of customers 

in the service facility. For example, at a highway toll booth, attendants tend 

to speed up toll collection during rush hours. Another example occurs in a 

shop with a given number of machines where the rate of breakdown 

decreases as the number of broken machines increases(because only 

working machines are capable of generating new breakdowns). 

Define, 

 𝑛 =Number of customers in the system 

 𝜆𝑛 =Arrival rate given n customers in the system 

 𝜇𝑛 =Departure rate given n customers in the system 

 𝑃𝑛 =Steady-state probability of n customers in the system 



The generalized model derives pn, as a function of λn and μn.These 

probabilities are then used to determine the system's measures of 

performance, such as the average queue length, the average waiting time, 

and the average utilization of the facility. 

The probabilities pn are determined by using the transition-rate diagram 

 

 

The queuing system is in state n when the number of customers in the system 

is n.The probability of more than one event occurring during a small interval 

h tends to zero as h → 0. This means that for n > 0, state n can change only 

to two possible states: n-1 when a departure occurs at the rate μn and n+1 

when an arrival occurs at the rate λn. State 0 can only change to state 1 when 

an arrival occurs at the rate λo. μo is undefined because no departures can 

occur if the system is empty. 

      Under steady-state conditions, for n>0, the expected rates of flow into 

and out of state n must be equal. Based on the fact that state n can be changed 

to states n-1 and n + 1 only, we get 

(
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑎𝑡𝑒 𝑜𝑓
𝑓𝑙𝑜𝑤 𝑖𝑛𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑛

)=  𝜆𝑛−1𝑝𝑛−1 + µ𝑛+1𝑝𝑛+1 

Similarly,      



(
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑎𝑡𝑒 𝑜𝑓
𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑛

) =(𝜆𝑛 + µ𝑛)𝑝𝑛 

 

Equating the two rates , we get the following balance equation: 

𝜆𝑛−1𝑝𝑛−1 + µ𝑛+1𝑝𝑛+1 = (𝜆𝑛 + µ𝑛)𝑝𝑛 ,n = 1,2,.... 

From figure 15.2 , the balance equation associated with n=0 , is 

 𝜆0𝑃0 = µ1𝑃1 

      The balance equation are solved recursively in terms of 𝑃0 as follows: For 

n=0 , 

   we have     

 𝑃1 = (
𝜆0

µ1
) 𝑃0 

Next , for n=1 , we have  

 𝜆0𝑃0 + µ2𝑃2 = (𝜆1 + µ1)𝑃1 

Substituting 𝑃1 = (
𝜆0

µ0
)𝑃0 and simplifying, we get 

𝑃2 = (
𝜆1𝜆0
µ2µ1

)𝑃0 

In general , we can show by induction that  

𝑃𝑛 = (
𝜆𝑛−1𝜆𝑛−2…𝜆0

µ𝑛µ𝑛−1…µ1
)𝑃0 , n = 1,2,...  

The value of 𝑃0 is determined from the equation ∑ 𝑃𝑛
∞
𝑛=0 =1 

 

 

 



 

 

SPECIALIZED POISSON QUEUES 

The specialized Poisson queuing situation with c parallel servers. A 

waiting customer is selected from the queue to start service with the first 

available server.The arrival rate at the system is A customers per unit time. 

All parallel servers are identical, meaning that the service rate for any server 

is customers per unit time. The number of customers in the system is defined 

to include those in service and those waiting in queue. 

The given figure shows the specialized Poisson queuing situation with 

c parallel servers 

 

A convenient notation for summarizing the characteristics of the queuing 

situation in the given figure is given by the following format:(a/b/c):(d/e/f) 

where 

     a = Arrivals distribution 

     b= Departures (service time) 

SYSTEM 

SERVICE  

FACILITY QUEUE 



           distribution 

     c= Number of parallel servers 

          (=1,2....) 

     d = Queue discipline 

     e= Maximum number  (finite or.   infinite) allowed in the system (in-

queue plus in- service)  

      f= Size of the calling source (finite or infinite) 

The standard notation for representing the arrivals and departures 

distributions (symbols a and b) is 

 

M=Markovian (or Poisson) arrivals or departures distribution 

(or equivalently exponential interarrival or service time distribution) 

D= Constant (deterministic) time 

Ek= Erlang or gamma distribution of    time (or, equivalently, the sum of 

independent exponential distributions) 

GI = General (generic) distribution of interarrival time 

G= General (generic) distribution of service time 

The queue discipline notation (symbol d) includes 

FCFS = First come, first served 

LCFS = Last come, first served 

SIRO= Service in random order 

GD = General discipline (i.e., any type of discipline) 



The first three Clements of the notation (a/b/c), were devised by D. G. 

Kendall in 1953 and are known in the literature as the Kendall notation. 

Steady-State Measures of Performance 

The most commonly used measures of performance in a queuing situation 

are 

Ls= Expected number of customers in system 

Lq=Expected number of customers in queue 

Ws= Expected waiting time in system 

Wq= Expected waiting time in queue 

C̅=Expected number of busy servers 

 

These relationships are valid under rather general conditions. The parameter 

Aeff is the effective arrival rate at the system. It equals the (nominal) arrival 

rateA when all arriving customers can join the system. Otherwise, if some 

customers cannot join because the system is full (e.g., a parking lot), then 

𝜆𝑒𝑓𝑓 < 𝜆. direct relationship also exists between𝑊𝑠 and 𝑊𝑞. By definition, 

(
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑤𝑎𝑖𝑡𝑖𝑛𝑔
𝑡𝑖𝑚𝑒 𝑖𝑛  𝑠𝑦𝑠𝑡𝑒𝑚

)=(
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑤𝑎𝑖𝑡𝑖𝑛𝑔
𝑡𝑖𝑚𝑒 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒

)+ (
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑡𝑖𝑚𝑒  
) 

This translates to 

 𝑊𝑠 = 𝑊𝑞 +
1

𝜇
 

Next, we can relate 𝐿𝑠, to 𝐿𝑞 by multiplying both sides of the last formula by 

𝜆𝑒𝑓𝑓, which together with Little's formula gives 

 𝐿𝑠 = 𝐿𝑞 +
𝜆𝑒𝑓𝑓

𝜇
 



By definition, the difference between the average number in the system, 

𝐿𝑠and the average number in the queue, 𝐿𝑞, must equal the average number 

of busy servers,C̅. We thus have 

 C̅= 𝐿𝑠 − 𝐿𝑞 =
𝜆𝑒𝑓𝑓

µ
 

It follows that           

(
𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦
𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

) =
𝑐̅

𝑐
 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 

SINGLE SERVER MODELS  

This section presents two models for the single server case. The first 

model sets no limit on the maximum number in the system and the second 

model assumes a finite system limit. Both models assume an infinite-

capacity source. Arrivals occur at the rate    customers per unit time and the 

service rate is   customers per unit time. 

 

 (M/M/1):(GD/ ∞/∞). Using the notation of the generalized model,we have 

     𝜆𝑛 = λ 

 𝜇𝑛 = µ   , n=0,1,2,... 

Also, λeff = λ and λlost =0,  because all arriving customers can join the 

system. Letting ρ= 
𝜆

 µ
 ,the expression for Pn in the generalized model then 

reduces to 

 Pn =𝜌𝑛P0, n=0,1,2,... 

To determine the value of P0 ,we use the identity 

 P0(1+ρ+𝜌2+...) =1 

 

Assuming ρ<1, the geometric series will have the finite sum (
1

1−𝜌
 )thus  

 P0 =1-ρ, provided ρ<1. 



 

The general formula for Pn is thus given by the following geometric 

distribution  

 Pn = (1-ρ)𝜌𝑛, n=1,2,...(ρ<1) 

 

The mathematical derivation of Pn imposes the condition  ρ <1,or λ<µ. 

If λ≥µ  ,the geometric series will not convergeand the steady -state 

probabilities     will not exist. This result makes intuitive sense , because 

unless the service rate is larger than the arrival rate,queue length will 

continually increase and no steady state can be reached. 

The measure of performance  Lq  can be derived in the following manner: 

               LS = ∑ 𝑛𝑝∞
𝑛=0 n = ∑ (1 − 𝜌)∞

𝑛=0 𝜌𝑛 

                  = (1-ρ)ρ
𝑑

𝑑𝑝
∑

𝑛
𝜌

∞
𝑛=0  

                 = (1-ρ)ρ
𝑑

𝑑𝑝
 (

1

1−𝑝
) = 

𝑃

1−𝜌
 

Because λeff = λ for the present situation , the remaining measures of 

performance are computed using the relationships . 

     Thus, 

                WS = 
𝐿𝑠

𝜆
  = 

1

µ(1−𝑝)
  = 

1

µ−𝜆
 

 Wq = WS - 
1

µ
  =  

𝜌

µ(1−𝜌)
 

 Lq = λWq = 
𝜌2

1−𝜌
 

  c‾= LS – Lq = ρ 

 



Waiting Time Distribution for (M/M/1):(FCFS/∞/∞) 

Although the average waiting time is independent of the queue discipline, 

its probability density function is not.  

Let  τ    be the amount of time a person just arriving must be in the 

system(ie,until the service is completed). Based on the FCFS discipline, if 

there are n customers in the system ahead of an arriving customer,then 

τ = t’1 + t2 + ... + 𝑡𝑛+1 

Where t'1   is the time needed for the customer currently in service to 

complete service and t2,t3,.......tn are the service times for the n-1 customers 

in the queue . The time tn+1  represents the service times for the arriving 

customer. 

 

Define  ω(τ∣ n+1) as the conditional density function of τ given n customers 

in the system ahead of the arriving customer. Because the distribution of the 

service time is exponential,the forgetfulness property tells us that t'1 is also 

exponential with the same distribution. Thus,τ is the sum of n+1 identically 

distributed and independent exponential random variables. From 

probability theory, ω(τ∣n+1) follows a gamma distribution with 

parameters µ and n+1. We thus have 

 ω(τ) = ∑ 𝜔∞
𝑛=0 (τ∣n+1)Pn 

 = ∑
µ

𝑛!
[ (µ𝜏)𝑛∞

𝑛=0 𝑒−µ𝜏 ](1-ρ)𝜌𝑛 

 = (1-ρ)µ𝑒−µ𝜏 ∑
(𝜆𝜏)𝑛

𝑛!
∞
𝑛=0  

 = (1-ρ)µ𝑒−µ𝜏𝑒𝜆𝜏 

 = (µ-λ)𝑒−(µ−𝜆)𝜏 , τ> 0 

Thus, ω(τ) is an exponential distribution with mean                    



Ws= 
1

(µ−𝜆)′
 

 

(𝐌/𝐌/𝟏): (𝐆𝐃/𝐍/∞). This model differs from (M/M/1) ∶  (GD/ ∞/∞ ) in that 

there is a limit N on the number in the system (maximum queue length = N-

1). Examples include manufacturing situations in which a machine may have 

a limited buffer area, and a one-lane drive -in window in a fast- food 

restaurant.When the number of customers in the system reaches N, no more 

arrivals are allowed. Thus, we have    

𝜆𝑛 = {
𝜆, 𝑛 = 0,1,…𝑁−1

0, 𝑛 = 𝑁,𝑁 + 1
 

µn = µ,  n = 0,1,... 

Using ρ = 
𝜆

µ
  , the generalized model 

𝑃𝑛 = {
𝑝𝑛𝑝。𝑛 ≤ 𝑁
0, 𝑛 > 𝑁

 

The value of P0 is determined from the equation 

 ∑ 𝑃∞
𝑛=0 n =1 ,which yields  

𝑃0(1+ p + 𝑝2+ ... + 𝑝𝑁) = 1 

         Or 

𝑃0 =

{
 

 
(1 − 𝜌)

1 − 𝜌𝑁+1
, 𝜌 ≠ 1

1

𝑁 + 1
, 𝜌 = 1

 

     Thus, 

 𝑃𝑛 = {

(1−𝜌)𝜌𝑛

1−𝜌𝑁+1
, 𝜌 ≠ 1

1

𝑁+1
, 𝜌 = 1

,n = 0,1,...N 



The value of ρ = 
𝜆

µ
  need not be less than 1 in this model, because arrivals at 

the system are controlled by the system limit N. This means that 𝜆𝑒𝑓𝑓, rather 

than λ,is the rate that matters in this case. Because customers will be lost 

when there are N in the system. Then, 

 𝜆𝑙𝑜𝑠𝑡 = 𝜆𝑃𝑁 

 𝜆𝑒𝑓𝑓 = λ-𝜆𝑙𝑜𝑠𝑡 = λ(1-𝑃𝑁) 

In this case ,𝜆𝑒𝑓𝑓< µ. 

        The expected number of customers in the system is computed as  

𝐿𝑠 = ∑ 𝑛𝑝𝑁
𝑛=1 n 

                                = ( 
1−𝜌

1−𝜌𝑁+1
 )∑ 𝑛𝜌𝑛𝑁

𝑛=0  

                        = ( 
1−𝜌

1−𝜌𝑁+1
 )ρ

𝑑

𝑑𝜌
∑ 𝜌𝑛𝑁
𝑛=0  

                        = 
(1−𝜌)𝜌

1−𝜌𝑁+1
𝑑

𝑑𝜌
 ( 
1−𝜌𝑁+1

1−𝜌
  ) 

                        = 
𝜌[1−(𝑁+1)𝜌𝑁+𝑁𝜌𝑁+1]

(1−𝜌)(1−𝜌𝑁+1)
 , ρ≠ 1 

 

 

 

 

 



CHAPTER 5 

MULTIPLE SERVER MODELS 

 

This section considers three queuing models with multiple parallel 

servers.The first two models are the multi-server versions of the models . 

The third model treats the self-service case, which is equivalent to having an 

infinite number of parallel servers. 

(M/M/c) : (GD/∞ /∞). In this model, there are c parallel servers. The arrival 

rate is λ and the service rate per server is µ . Because there is no limit on the 

number in the system, λeff = λ. 

The effect of using parallel servers is a proportionate increase in the facility 

service rate. In terms of the generalized model ,𝜆𝑛 and𝜇𝑛 are thus defined as  

 𝜆𝑛 = λ ,  n ≥ 0 

 𝜇𝑛 = {
𝑛𝜇, 𝑛 < 𝑐
𝑐𝜇, 𝑛 ≥ 𝑐

 

 

Thus , 

𝑝0= {

𝜆𝑛

𝜇(2𝜇)(3𝜇)…(𝑛𝜇)
𝑝0 =

𝑑𝑦𝑛

𝑛!𝜇𝑛
𝑝0 =

𝜌𝑛

𝑛!
𝑝0 , 𝑛 < 𝑐

𝜆𝑛

(∏ 𝑖𝜇)𝑐
𝑖=1 (𝑐𝜇)𝑛−𝑐

𝑝0 =
𝜆𝑛

𝑐!𝑐𝑛−𝑐𝜇𝑛
𝑝0 =

𝜌𝑛

𝑐!𝑐𝑛−𝑐
𝑝0 𝑛 ≥ 𝑐

 

Letting ρ = 
𝜆

µ
 ,and assuming 

𝜌

𝑐
<1 ,the value of 𝑝0 is determined 

from ∑ 𝑝𝑛
∞
𝑛=0  =1,   

which gives,  



 𝑃0 = {∑
𝜌𝑛

𝑛!
+
𝜌𝑐

𝑐!
∑

𝜌𝑛−𝑐

𝑐
∞
𝑛=𝑐

𝑐−1
𝑛=0 } .−1 

 = {∑
𝜌𝑛

𝑛!
𝑐−1
𝑛=0 +

𝜌𝑐

𝑐!
(
1

1−
𝜌

𝑐

)} .−1  ,
𝜌

𝑐
< 1 

The expression for 𝐿𝑞 can be determined as follows : 

 𝐿𝑞 = ∑ (𝑛 − 𝑐)∞
𝑛=𝑐 𝑝𝑛 

 = ∑ 𝑘∞
𝑘=0 𝑝𝑘+𝑐 

 = ∑ 𝑘∞
𝑘=0

𝜌𝑘+𝑐

𝑐𝑘𝑐!
𝑝0 

 = 
𝜌𝑐+1

𝑐!𝑐
𝑝0 ∑ 𝑘(

𝜌

𝑐
)𝑘−1∞

𝑘=0  

 = 
𝜌𝑐+1

𝑐!𝑐
𝑝0

𝑑

𝑑(
𝜌

𝑐
)
∑ (

𝜌

𝑐
)𝑘∞

𝑘=0  

 = 
𝜌𝑐+1

(𝑐−1)!(𝑐−𝜌)2
𝑝0 

Because 𝜆𝑒𝑓𝑓 = 𝜆, 𝐿𝑠 = 𝐿𝑞 + ρ. The values of 𝑊𝑠 and 𝑊𝑞 can be determined by 

dividing 𝐿𝑠 and 𝐿𝑞 by λ. 

 

(M/M/c):(GD/N/∞),c≤N.This model differs from that of the 

(M/M/c):(GD/∞ /∞) model in that the system limit is finite and equal to N. 

This means that the maximum queue size is N-c . The arrival and service 

rates are λ and µ. The effective arrival rate  𝜆𝑒𝑓𝑓  is less than λbecause of the 

system limit N.  

      In terms of the generalized model ,𝜆𝑛 and µ𝑛 for the current model are 

defined as 

 𝜆𝑛 = {
𝜆, 0 ≤ 𝑛 ≤ 𝑁
0, 𝑛 > 𝑁

 



 𝜇𝑛 = {
𝑛𝜇, 0 ≤ 𝑛 ≤ 𝑐
𝑐µ, 𝑐 ≤ 𝑛 ≤ 𝑁

 

Substituting 𝜆𝑛 and 𝜇𝑛  in the general expression and noting that ρ = 
𝜆

µ′
  we 

get  

 𝑃𝑛 = {

𝜌𝑛

𝑛!
𝑝0, 0 ≤ 𝑛 < 𝑐

𝜌𝑛

𝑐!𝑐𝑛−𝑐
𝑝0, 𝑐 ≤ 𝑛 ≤ 𝑁

 

Where  

𝑃0 =

{
  
 

  
 (∑

𝜌𝑛

𝑛!
+
𝜌𝑐(1 − (

𝜌

𝑐
)𝑁−𝑐+1)

𝑑𝑥

𝑐−1

𝑛=0

) −1,
𝜌

𝑐
≠ 1

(∑
𝜌𝑛

𝑛!
+
𝜌𝑐

𝑐!

𝑐−1

𝑛=0

(𝑁 − 𝑐 + 1)) −1,
𝜌

𝑐
= 1

 

        Next, we compute 𝐿𝑞 for the case where 
𝜌

𝑐
 ≠1  as  

𝐿𝑞= ∑ (𝑛 − 𝑐)𝑁
𝑛=𝑐 𝑝𝑛 

      = ∑ 𝑗𝑁−𝑐
𝑗=0 𝑝𝑗+𝑐 

      = 
𝜌𝑐𝜌

𝑐!𝑐
𝑝0∑ 𝑗(

𝜌

𝑐
)𝑗−1𝑁−𝑐

𝑗=0  

      = 
𝜌𝑐+1

𝑐𝑐!
𝑝0

𝑑

𝑑(
𝜌

𝑐
)
∑ (

𝜌

𝑐
)𝑗𝑁−𝑐

𝑗=0  

    =
𝜌𝑐+1

(𝑐−1)!(𝑐−𝜌)2
{1 − (

𝜌

𝑐
)𝑁−𝑐+1 − (𝑁 − 𝑐 + 1)(1 −

𝜌

𝑐
)(
𝜌

𝑐
)𝑁−𝑐} 𝑝0 

 

It can be shown that for 
𝜌

𝑐
 = 1, 𝐿𝑞 reduces to 

 𝐿𝑞 = 
𝜌𝑐(𝑁−𝑐)(𝑁−𝑐+1)

2𝑐!
𝑝0 , 

𝜌

𝑐
 = 1 



To determine  𝑊𝑞  and  hence 𝑊𝑠  and  𝐿𝑠 ,we compute the value of 𝜆𝑒𝑓𝑓 as 

 𝜆𝑙𝑜𝑠𝑡 = 𝜆𝑃𝑁 

 𝜆𝑒𝑓𝑓 = λ-𝜆𝑙𝑜𝑠𝑡 = (1-𝑃𝑁)λ 

 

(M/M/∞ ):(GD/ ∞/∞)- Self-Service Model. 

The number of servers in unlimited because the customer is also the server. 

A typical example is taking the written part of a drivers license test. Self -

service gas stations and 24-hour ATM banks do not fall under this model's 

description because the servers in these cases are actually the gas pumps and 

the ATM machines. The model assumes steady arrival and service rates, λ 

and µ ,respectively. 

       In terms of the generalized model, we have  

 𝜆𝑛 = λ,    n = 0,1,2,... 

 µ𝑛 = nµ,  n = 0,1,2,... 

Thus, 

 𝑃𝑛 =  
𝜆𝑛

𝑛!µ𝑛
𝑝0 =  

𝜌𝑛

𝑛!
𝑝0,   n = 0,1,2,... 

Because ∑ 𝑃𝑛
∞
𝑛=0 =1 , it follows that 

 𝑃0 =
1

1+𝜌+
𝜌2

2!
+⋯

 = 
1

𝑒𝜌
 = 𝑒−𝜌 

As a result, 

 𝑃𝑛 =  
𝑒−𝜌𝜌𝑛

𝑛!
,   n= 0,1,2,... 

Which is Poisson with mean 𝐿𝑠 = ρ. As should be expected, 𝐿𝑞 and 𝑊𝑞 are 

zero because it is a self-service model. 



Machine Servicing Model-(M/M/R):(GD/K/K), R 

<K 

The setting for this model is a shop with K machines. When a machine breaks 

down one of R available repairpersons is called upon to do the repair. The 

rate of breakdown per machine is λ breakdowns per unit time, and a 

repairperson will service broken machines at the rate of µ machines per unit 

time. All breakdowns and services are assumed to follow the Poisson 

distribution. 

    This model differs from all the preceding ones because it has a finite calling 

source. We can see this point by realizing that when all the machines in the 

shop are broken, no more calls for service can be generated. In essence, only 

machines in working order can break down and hence can generate calls for 

service. 

    Given the rate of breakdown per machine,λ the rate of breakdown for the 

entire shop is proportional to the number of machines that are in working 

order. In terms of the queuing model, having n machines in the system 

signifies that n machines are broken. Thus, the rate of breakdown for the 

entire shop is 

 𝜆𝑛 = (𝐾 − 𝑛)𝜆, 0 ≤n ≤ k 

In the terms of the generalized model, we have 

 𝜆𝑛 = {
(𝐾 − 𝑛)𝜆, 0 ≤ 𝑛 ≤ 𝐾

0, 𝑛 ≥ 𝑘
 

 

 𝜇𝑛 = {
𝑛𝜇, 0 ≤ 𝑛 ≤ 𝑅
𝑅µ, 𝑅 ≤ 𝑛 ≤ 𝐾

 

From the generalized model, we can then obtain,  



𝑃𝑛 = {
𝐶𝑛
𝐾𝜌𝑛𝑝0, 0 ≤ 𝑛 ≤ 𝑅

𝐶𝑛
𝐾
𝑛! 𝜌𝑛

𝑅!𝑅𝑛−𝑅
𝑝0, 𝑅 ≤ 𝑛 ≤ 𝐾

 

𝑃0 = (∑𝐶𝑛
𝐾𝜌𝑛 + ∑ 𝐶𝑛

𝐾
𝑛! 𝜌𝑛

𝑅!𝑅𝑛−𝑅

𝐾

𝑛=𝑅+1

𝑅

𝑛=0

) −1 

There is no closed form expression for 𝐿𝑠 , and hence it must be computed 

using the following basic definition: 

 𝐿𝑠 = ∑ 𝑛𝑝𝑛
𝐾
𝑛=0  

The value of 𝜆𝑒𝑓𝑓 is computed as  

 𝜆𝑒𝑓𝑓 = E{𝜆(𝐾 − 𝑛)} = λ(K - 𝐿𝑠) 

 

 

 

 

 

 

 

 

 

 



APPLICATIONS OF QUEUING THEORY 

 Queuing theory can be applied to a wide variety of operational 

situations. In particular, the technique of queuing theory is applied for 

solutions of large number of problems such as  

1. Scheduling of air craft at landing and takeoff from busy airports. 

2. Scheduling of issue and return of tools by workmen from tool cribs in 

factories. 

3. Scheduling and distribution of scarce war material. 

4. Scheduling of works and jobs in production control. 

5. Minimization of congestion due to traffic delay at toll booths. 

6. Scheduling of components to assembling lines. 

7. Scheduling and routing of salesman. 

 

LIMITATIONS OF QUEIUNG THEORY 

1) Most of the queuing models are complex and cannot be easily 

understood. There is always the element of uncertainty in all queuing 

situations. There, the probability distribution to be applied for arrivals 

or services may not be clearly known. 

2)  Queue discipline also imposes some limitations. We assume first come 

first served service discipline. If this assumption is not true, Queuing 

analysis becomes more complex. 

3) In multichannel queuing, several times the departure from one queue 

forms the departure for another. This makes the analysis more 

complex. 

 

 

 



CONCLUSION 

 

Our Project is a sincere attempt to study the topic Queuing Theory and its 
applications in day today life. Queuing theory is a major system in our 
society. Every person has had to stand in line at one point in their lives. 
Understanding queuing theory helps compensate for these waiting periods. 
For electronically functioning devices installing a queuing program is the 
only way it can function and perfume in banks, air plane landing queues and 
in this vast world of electronics 
 
Overall, queuing theory can be used to help reduce waiting times and where 
waiting times are inevitable. Applying the queuing theory in daily life 
increases the time efficiency in all aspects. 
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