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 CHAPTER  1 

INTRODUCTION 
 

The development of the graph theory is very much similar to the 

development of the probability theory. The original work of the 

graph theory was motivated by constant efforts to understand or 

solve real life problems. It is no coincidence that different 

mathematicians have been discovering the graphs theory many 

times independently. Graph theory is very important area of 

applied mathematics. 

  

In 1936,the psychologist Lewin used planar graphs to represent 

the life space of an individual. Kuratowski discovered several 

other criteria for the identification of planarity of graphs. Tutte 

developed an important algorithm for drawing a planar graph in 

a plane. 

 

In graph theory, a planar graph is a graph that can be embedded 

in the plane ,i.e, it can be drawn on the plane in such a way that 

its edges intersect only at their end points. In other words, it can 

be drawn in such a way that no edges cross each other. 
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CHAPTER -2 
 

PLANAR GRAPHS 
 

2.1-PLANE AND PLANAR GRAPH 

 
Definition: 

A plane graph is a graph drawn in the plane in such a way that any pair 

of edges meet only at their end vertices (if they meet at all) 

A planar graph is a graph which is isomorphic to a plane graph i.e, it can 

be (re)drawn as a plane graph 

A graph that cannot be drawn on a plane without a crossover between its 

edges is called non-planar. 

 

              
 

 

                       Fig – Five Planar graphs 
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                         Fig – Non Planar graphs 

 

Definition: 

 

A Jordan curve in the plane is a continuous non-self intersecting curve 

whose origin and terminus coincide. 

 

             
                    C1                          C2 

 

Here C1 is not Jordan curve but C2 is a Jordan curve. 

 

Definition: 

 

If J is a Jordan curve in the plane then the part of the plane enclosed by J 

is called the interior of J and denoted by int J – we exclude from int J the 

points actually lying on J. 

Similarly the part of the plane lying outside J is called the exterior of J 

and denoted by ext J. 
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Theorem 2.1.1 - Jordan Curve theorem 

 

The Jordan curve theorem states that if J is a Jordan Curve and if x is a 

point in   int J and y is a point in ext J then any line joining x to y must 

meet J at some point i.e, must cross J. 

 

 

2.2-EULER’S FORMULA 
 

Definition: 

A plane graph G partitions the plane into a number of regions called the 

faces of G. More precisely, if x is a point on the plane which is not in G, 

i.e. is not a vertex of G or a point on any edge of G, then we define the 

face of G containing x to be the set of all points on the plane which can 

be reached from x by a line which does not cross any edge of G or go 

through any vertex of G.  

 

Any plane graph has exactly one exterior face. The exterior face is 

unbounded. Any other face is bounded by a closed walk in the graph and 

is called an interior face. 

     

The number of faces of a plane graph G is denoted by f(G) or just simply 

by f. 

 

Example: 

 

Consider the following graph G 

 

 
                                                       f1 

 

 

 

                                         FF                G 

f2               f3  

 

          

         f4 
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G has 4 faces – f1,f2, f3 and f4 in which f1 is the exterior face and f2, f3 

and f4 are interior faces. Hence f(G)=4. 

 

Definition: 

 

Letϕbe the face of a plane graph G. We define the degree ofϕ, denoted 

by d(ϕ),to be the number of edges on the boundary of ϕ. 

In the above example degree of f4 is 5. 

 

Note 

d(ϕ) >3 for any interior face ϕof a simple plane graph. 

 

EULER’S FORMULA 
 

Theorem 2.2.1 
 

 Let G be a connected plane graph, and let n,e and f denote the number 

of vertices, edges and faces of G, respectively. Then 

n – e+f=2 

 

 

Proof: 

To prove this theorem, we use induction one, the number of edges of G. 

 

If e=0 then G must have just one vertex, i.e. n=1 and one face, the 

exterior face, i.e. f=1.Thus n-e+f = 1-0+1=2 and so the result is true for 

e=0. 

     

Now consider the case when e=1. Then the number of vertices of G is 

either 1 or 2,first possibly occurring when the edge is a loop. These two 

possibilities give rise to two faces and one face respectively, as shown in 

the figure 
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    n=1                         n=2 

 

Thus, 

 

n-e+f=1-1+2, in the loop case 

 =2-1+1, in the non-loop case 

=2 

as required. 

 

Now suppose that the result is true for any connected plane graph G with 

e-1 edges (for a fixed e≥1). 

 

Let us add one new edge k to G to form a connected super graph of G 

which we denote by G+k. There are three ways of doing this: 

 

1) k is a loop, in which case we have created a new face (bounded by 

the loop) but the number of vertices remains unchanged, or  

 

2) k joins two distinct vertices of G, in which case one of the faces of 

G is split into two, so again the number of faces has increased by 

one but the number of vertices has remained unchanged, or 

 

3) k is incident with only one vertex of G in which case another 

vertex must be added, increasing the number of vertices by one, 

but leaving the number of faces unchanged. 

 

Now let n', e' and f' denote the number of vertices, edges and faces in G 

and n, e and f denote the number of vertices, edges and faces in G+k. 

Then, 

 

in case1 

 n-e+f = n'-(e'+1)+(f'+1)=n'-e'+f' 
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in case2  

 n-e+f = n'-(e'+1)+(f'+1)= n'-e'+f 

 

in case3 

 n-e+f =(n'+1)-(e'+1)+f'= n'-e'+f' 

 

and by our induction assumption, n'-e'+f'=2. Thus, in each case  

n-e+f =2. 

 

Now any plane connected graph with e edges is of the form G+k, for 

some plane connected graph G with e-1 edges and a new edge k. Thus it 

follows by induction that the formula is true for all plane graphs. 

 

Corollary 2.2.1 

 

Let G plane graph  with n vertices, e edges, f faces and k connected 

components. Then n-e+f = k+1. 

 

Theorem 2.2.2 

 

Let G be simple planar graph with n vertices and e edges, where 

n≥3.Then  

e ≤ 3n-6 

 

Corollary 2.2.2 

 

K5 is non-planar. 

 

Proof: 

 

Here n=5 and e =
5∗4

2
=10 so that 3n-6 =9. Thus e>3n-6 and so, by the 

theorem, K5 cannot be planar. 
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Corollary 2.2.3 

 

K3,3 is non-planar. 

 

Proof: 

 

Since K3,3 is bipartite it contains no odd cycles and so in particular no 

cycle of length three. It follows that every face of plane drawing of K3,3 

,if such exists must have at least have four boundary edges. Thus, using 

the argument of the proof of the above theorem, we get b≥4f and then 

4f≤2e, i.e. 2f≤e = 9. 

This gives f ≤ 9/2.  

However, by Euler’s formula f=2-n+e= 2-6+9 =5,a contradiction.  

Hence K3,3 is non planar. 

 

 

2.3-REPRESENTATION  OF A PLANAR GRAPH 

 

STRAIGHT-LINE REPRESENTATION 

 

One's ability to draw a planar graph in a plane does not depend on his 

ability to draw many crooked lines through devious routes. The 

following is important and somewhat surprising result, due to Fary, tells 

us there is no need to bend edges in drawing a planar graph to avoid 

edge intersections. 

 

Theorem 2.3.1 

Any simple planar graph can be embedded in a plane such that every 

edge is drawn as a straight-line segment. 
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Example: 

Consider the graph 

                 

                                               

The straight-line representation of this graph is 

                 

                         

PLANE REPRESENTATION 

 

A plane representation of a graph divides the plane into regions or faces. 

A region is characterized by the set of edges (or the set of vertices) 

forming its boundary. 
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Example: 

The plane representation of the graph 

 

Note that a region is not defined in a non-planar graph or even in a 

planar graph not embedded in a plane. Thus, a region is a property of the 

specific plane representation of a graph.  

We know that every planar graph has an exterior face or an exterior 

region. Like other regions, the infinite region also characterised by a set 

of edges. Clearly, by changing the embedding of a given paragraph, we 

can change the infinite region or the exterior region. 

 

EMBEDDING ON A SPHERE 

To eliminate the distinction between finite and infinite regions, a planar 

graph is often embedded in the surface of a sphere. It is accomplished by 

stereographic projection of a sphere on a plane. Put the sphere on the 

plane and call the point of contact SP. At point SP, draw a straight line 

perpendicular to the plane and let the point where this line intersects the 

surface of the sphere be called NP.  
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Now, corresponding to any point P on the plane, there exists a unique 

point P' on the sphere and vice-versa, where P' is the point at which the 

straight line from P to point NP intersects the surface of the sphere. 

Thus, there is a one-to-one correspondence between the points of the 

sphere and finite points on the plane, and points at infinity in the plane 

correspond to the point NP on the sphere. 

 

From this construction, it is cleared that any graph that can be embedded 

in a plane can also be embedded in the surface of the sphere and vice-

versa. Hence the following theorem. 

 

Theorem 2.3.2 

A graph can be embedded in the surface of a sphere if and only if it can 

be embedded in a plane. 

 

A planar graph embedded in the surface of a sphere divides the surface 

into different regions. Each region on the sphere is finite, the infinite 

region on the plane having been mapped onto the region containing the 
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point NP. Now it is clear that by suitably rotating the sphere we can 

make any specified region map onto the infinite region on the plane. 

From this we obtain the following theorem. 

 

Theorem 2.3.3 

A planar graph may be embedded in a plane such that any specified 

region can be made the infinite region. 

 

PLANE REPRESENTATION AND CONNECTIVITY 

In a disconnected graph the embedding of each component can be 

considered independently. Therefore, it is clear that a disconnected 

graph is planar if and only if each of its components is planar. Similarly, 

in a separable (or t- connected) graph the embedding of each block can 

be considered independently. Hence a separable graph is planar if and 

only if each of its blocks is planar.  

Therefore, in questions of embedding or planarity, one need to consider 

only non- separable graphs. Now we are going to consider the unique 

embedding of a non- separable planar graph on a sphere. 

 

Definition: 

Two embeddings of a planar graph on a sphere are not distinct if the 

embeddings can be made to coincide by suitably rotating one sphere 

with respect to other and possibly distorting regions (without letting a 

vertex cross an edge).If of all possible embeddings on a sphere no two 

are distinct, the graph is said to have a unique embedding on a sphere (or 

unique plane representation). 
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Example: 

Consider two embeddings of the same graph given in the figure. 

 

The embedding (b) has a region bounded with five edges, but 

embedding (a) has no regions with 5 edges. Thus, rotating two spheres 

on which (a) and (b) are embedded will not make them coincide. Hence 

two embeddings are distinct, and the graph has no unique plane 

representation. 

 

Consider the two embeddings of another graph 
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These embeddings, when considered on a sphere, can be made to 

coincide. 

 

The following theorem tells us exactly when a graph is uniquely 

embeddable in a sphere.  

 

Theorem 2.3.4 

The spherical embedding of every planar 3 – connected graph is unique. 

 

2.4 – TYPES OF PLANAR GRAPH 

 

MAXIMAL PLANAR GRAPHS 

 

A simple graph is called maximal planar if it is planar but adding any 

edge (on the given vertex set) would destroy that property. Every face of 

a maximal planar graph is bounded by three edges. Hence it is called 

plane triangulation or triangulation of the sphere. Every maximal planar 

is 3- vertex connected. 

 

Example: 

 

The Goldner- Harary graph is maximal planar, which contains 11 

vertices ,27 edges with radius and diameter 2 
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                           Fig:-  Goldner- Harary graph 

 

OUTER PLANAR GRAPHS 

 

Outer planar graphs are graphs with an embedding in the plane such that 

all vertices belong to the unbounded face of embedding. Every outer 

planar graph is planar, but the converse is not true. 

 

Example: 

 

The following graph is an outer planar graph. 
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𝐾4 and 𝐾2,3 are planar but not outer planar. 
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CHAPTER -3  
 

DUAL GRAPHS 

 
3.1-DUAL OF A PLANE GRAPH 

 
Definition: 

 

Consider the plane representation of a graph in figure (a) with six 

regions or faces F1 F2 F3 F4 F5 F6. Let us place six points P1 P2 P3 P4 P5 

P6 on figure (b). Next let us join these 6 points according to the 

following procedure. 
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If 2 regions Fi and Fj are adjacent (have a common edge) draw a line 

joining points Pi and Pj that intersects the common edge between Fi and 

Fj exactly once. If there is more than one edge common between Fi and 

Fj draw one line between points Pi and Pj for each of the common edges. 

For an edge e lying entirely in one region say Fk, draw self loop at point 

Pk intersecting e exactly once. By the procedure, we obtain a new graph 

G* consisting of 6 vertices and of edges joining these vertices. Such a 

graph G* is called DUAL [or strictly speaking a geometric dual]  of G. 

 

 

 

Clearly, there is a one-to-one correspondence between the edges of 

graph G and its dual G* - one edge of G* intersecting one edge of G 

 

Following are some simple observation that can be made about the 

relationship between a planar graph G and it's dual G* 

 

1.  A pendant edge in G yields a self loop in G* 

 

2. An edge forming a self loop in G yields a pendant edge in G* 

 

3. Parallel edges in G produces edges in series in G* 

 

4. Edges that are in series in G produce parallel edges in G* 

 

5. The number of edges in constituting the boundary of a region Fi in G 

is equal to the degree of the corresponding vertex Pi in G* 

 

6. Graphs G* is also embedded in the plane and is therefore planar. 

 

7. If n, e, f, r and u denote as usual the number of vertices, edges, 

regions, rank and nullity of a connected planar graph G, and if 

n*,e*,f*,r* and u* are the corresponding numbers in dual graphs G*, 

then, 
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            n*  =  f 

            e*  =  e 

            f*   =  n  

 

 Using the above relationship, one can immediately get, 

             r*   =  u 

             u*  =  r. 

          

 3.2-UNIQUENESS OF DUAL GRAPHS 

 

Because the dual graph depends on a particular embedding, the dual 

graph of a planar graph is not unique, in the sense that the same planar 

graph can have non- isomorphic dual graphs. 

 

  Consider the two isomorphic graphs G1 and G2.  

 

                      G1                                                G2 
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Actually, this is two distinct plane representations of the same graph. 

The duals of  these graphs are 

 

              G1*                                                             G2* 

Clearly, these two duals are non-isomorphic as G2
* has a vertex of 

degree 5 which is not present in G1
*. 

 

A planar graph G has a unique dual if and only if graph G has a unique 

plane representation or graph G can be uniquely embedded on a sphere. 

As a 3-connected planar graph has a unique embedding on a sphere, so 

its dual must be unique. On the other hand, all duals of a 3-connected 

graph are isomorphic. 

 

3.3-DUAL OF A SUBGRAPH 

 

Let G be a planar graph and G* be its dual. Let e be an edge in G and the 

corresponding edge in G* be e*. Suppose that we delete edge e from G 

and then try to find the dual of G-e. If edge e was on the boundary of 

two regions, removal of e would merge these two regions into one. Thus 



26 
 

the dual (G-e)* can be obtained from G* by deleting the corresponding 

edge e* and then fusing the two end vertices of e* in G*-e*. On the other 

hand, if edge e is not on the boundary, e* forms a self-loop. In that case 

G*-e* is same as (G-e)*. Thus if a graph G has a dual G*, the dual of any 

subgraph of G can be obtained by successive application of this 

procedure. 

 

Example: 

Consider the graph G and its dual G* 

                

                  G                                                         G* 

If we delete the edge e6 from G, the graph will be 
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The dual of this graph is obtained by deleting the edge e6
* from G* and 

then fusing the two end vertices of e6
* in G*-{e6

*}. 

 

3.4-DUAL OF A HOMEOMORPHIC GRAPH 

 

Definition: 

Two graphs are said to be homeomorphic if one graph can be obtained 

from the other by creation of edges in series (i.e. by insertion vertices of 

degree two) or by the merging of edges in series. 

Example: 

The following three graphs are homeomorphic to each other. 
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DUAL OF A HOMEOMORPHIC GRAPH 

Let G be a planar graph and G* be its dual. Let e be an edge in G, and 

the corresponding edge in G* be e*. Suppose that we create an additional 

vertex in G by introducing a vertex of degree two in edge e (i.e. e now 

becomes two edges in series). This will simply add an edge parallel to e* 

in G*. Likewise, the reverse process of merging two edges in series will 

simply eliminate one of the corresponding parallel edges in G*.Thus if a 

graph G has a dual G* ,the dual of any graph homeomorphic to G can be 

obtained from G* by the above procedure 

                  

 3.5- SELF DUAL GRAPHS 

 

Definition: 

If a planar graph G is isomorphic to it's own dual, it is called a self dual 

graph. 

 

Example: 

The complete graph on four vertices K4 is a self-dual graph. 

 

                           
 

Wheel graphs are self dual. Naturally the skeleton of a self dual 

polyhedron is a self dual graph. Since the skeleton of a pyramid is a 

wheel graph. It follows that pyramids are also self dual. 
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 Theorem 3.5.1 - Kuratowski’s Theorem 

A necessary and sufficient condition for a graph G to be planar is that G 

does not contain either of Kuratowski’s two graphs or any graph 

homomorphic to K5 or K3,3. 
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Theorem 3.5.2 

A graph has a dual if and only if it is planar. 

 

Proof: 

We have only to prove that a non-planar graph does not have a dual. Let 

G be a non-planar graph. Then according to Kuratowski’s theorem, G 

contains K5 or K3,3, or a graph isomorphic to either of these 

 

We know that a graph G has a dual only if every subgraph H of G and 

every subdivision of G has a dual. Thus, to prove the result, we show 

that neither K5 nor K3,3 has a dual. 

 

Suppose that K3,3 has a dual D. Then the bonds in K3,3 correspond to 

cycles in D and vice versa. Since K3,3 has no bond consisting of two 

edges, D has no cycle consisting of two edges. That is, D contains no 

pair of parallel edges. Since every cycle in K3,3 is of length 4 or 6, D has 

no bond with less than 4 edges. Therefore, the degree of every vertex in 

D is at least 4. As D has no parallel edges and degree of every vertex is 

at least 4, D has at least 5 vertices each of degree 4 or more. That is, D 

has at least (5*4)/2=10 edges. This is a contradiction to the fact that K3,3 

has 9 edges. Hence K3,3 has no dual. 

Suppose K5 has a dual H. We note that K5 has: 

1) 10 edges 

2) No pair of parallel edges 

3) No bond with 2 edges 

4) Bonds with only 4 or 6 edges 
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Therefore, graph H has 

1) 10 edges 

2) No vertex with degree less than 3 

3) No bond with 2 edges 

4) Cycles of length 4 or 6 only 

 

Now, graph H contains a cycle of length 6 and no more than 3 edges can 

be added to a hexagon without creating a cycle of length 3, or a pair of 

parallel edges. Since both of these are not present in H, and H has 10 

edges, there must be at least 7 vertices in H. The degree of each of the 

vertices is at least 3. This implies that H has at least 11 edges, which is a 

contradiction. Hence K5 has no dual.    

 

 

 

 

 

 

 

 

 

 

 

 

               



32 
 

 CHAPTER -4            

 APPLICATION 
 

Planarity and the other related concepts are useful in many 

practical situations. For example, in the design of a printed 

circuit board and the three utilities problem, planarity is used. 

 

The study of two-dimensional images often results in problems 

related to planar graphs, as does the solution of many problems 

on the two-dimensional surface of our Earth. Many three-

dimensional graphs arise in scientific and engineering problems. 

These often come from well-shaped meshes, which share many 

properties with planar graphs. While planar graphs were 

introduced for practical reasons, they possess many remarkable 

mathematical properties.  
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            CONCLUSION 
 

Planar Graphs constitute quite simple class of graphs, much simpler than 

the class of all graphs. So,as the science frequently does, if some 

algorithmic problem cannot be solved efficiently for all interesting 

inputs, we can at least strive to solve it for some of the inputs. Indeed, 

many problems that are hard for general graphs turn to possess 

polynomial-time algorithms when they are restricted to planar graphs 

due to their sparsity. 

 

Although being almost too structurally simple, planar graphs, should not 

be considered non-applicable to real life. For example, the task of large 

electronic circuit layout employs planar graph layout. Many algorithms 

for graph drawing, although targeting non-planar graphs, have a planar 

oriented core, i.e. try to make an input graph planar, then draw it, and 

then get back to the original graph.  

 

Planarity is one of the central notions of the whole graph theory, so just 

purely from the theoretical point of view it is interesting to consider 

planar graphs in algorithmic frame work. While there is a bunch of 

existing algorithms for testing planarity, the topic is still being 

researched and new optimizations are being discovered.  
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