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                        CHAPTER-1 

INTRODUCTION AND PRELIMINARIES 

 
1.1 INTRODUCTION  

The Theory of numbers is one of the oldest branches of mathematics; an 

enthusiast, by stretching a point here and there, could extend its roots back to 

surprisingly remote date. Although it seems probable that the Greeks were largely 

indebted to the Babylonians and ancient Egyptians for a core of information about 

the properties of the natural numbers, the rudiments of an actual theory are 

generally credited to Pythagoras and his disciples. 

Another approach to divisibility question is through the arithmetic of 

remainders, or the theory of congruence’s as it’s now commonly known. The 

concept and the notation that makesit such a powerful tool, was first introduced 

by the German mathematician Carl Friedrich Gauss(1777-1855)in his ‘Disquisitions 

Arithmetical’, this monumental work, which appeared in 1801 when Gauss was 24 

year old, laid the foundations of modern number theory. ”It’s really astonishing”, 

said Kronecker, “to think that a single man of such young years was able to bring 

to light such a wealth of results, and above all to present such a profound and well-

organized treatment of an entirely new discipline”. 

            Gauss was the last complete mathematician, and it is no exaggeration to 

say that he was in some degree connected with nearly every aspect of the subject. 

His contemporaries regarded him as Princeps Mathematicorum(Prince of 

Mathematics), on a par with Archimedes and Isaac Newton. 

           Although Gauss adrned every branch of Mathematics, he always held 

Number Theory in high esteem and affection. He insisted that, ”Mathematics is 

the Queen of the science, and the theory of numbers is the Queen of 

Mathematics”. 
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1.2 PRELIMINARIES  

1.2.1 Basic Properties of Congruence  

In the chapter of Disquisitione Arithmetical, Gauss introduces the concept of 

congruence and the notation that makes it such a powerful technique [He explains 

that he was induced to adopt the symbol ‘≡’ because of the analogue with 

algebraic equality]. According to Gauss, “If a number ‘n’ measures the differences 

between two numbers ‘a’ and ‘b’, then ‘a’ and ‘b’ are said to be congruent with 

respect to n; If not, incongruent”. Putting this into the form of a definition. 

Definition 1.1 

 Let n be a fixed positive integer. Two integers ‘a’ and ‘b’ are said to be congruent 

modulo n, symbolized by, 

                          𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛)  

If n divides the difference a-b; that is, provided that, 𝑎 − 𝑏 = 𝑘𝑛 for some integer 

k. 

For example, consider n=7, it’s routine to check that 3 ≡ 24(𝑚𝑜𝑑 7) 

       −31 ≡ 11(𝑚𝑜𝑑 7) 

        −15 ≡ −64(𝑚𝑜𝑑 7) 

Because 3 − 24 = (−3)7 ,  −31 − 11 = (−6)7 and −15 − (−64) = 7 × 7 

When 𝑛 ∤ (𝑎 − 𝑏), we say that a is incongruent to b modulo n, and in this case we 

write 𝑎 ≢  𝑏 (𝑚𝑜𝑑 𝑛). for example, 25 ≢  12(𝑚𝑜𝑑 7), because 7 fails to divide 

25 − 12 = 13. 

It’s to be noted that any two integers are congruent modulo 1, whereas two 

integers are congruent modulo 2 when they are both even or both odd. 

Given an integer a, let q and r be its quotient and remainder upon division by n, so 

that 

        𝐴 = 𝑞𝑛 + 𝑟  since 0 ≤ 𝑟 ≤ 𝑛 

 that is; 𝑎 − 𝑟 = 𝑞𝑛 

Then by definition of congruence, 𝑎 ≡ 𝑟(𝑚𝑜𝑑 𝑛). Because, there are n choices for 

r, we see that every  integer is congruent modulo n to exactly one of the values 
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0,1,2,………n-1; In particular, 𝑎 ≡ 0(𝑚𝑜𝑑 𝑛) if and only if   𝑛 ∕ 𝑎. The set of n 

integers 0,1,2,….n-1 is called the set of least non-negative resides modulo n. 

Theorem-1.1 

For arbitrary integers a and b, 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if a and b leave the same 

non-negative remainder when divided by n. 

Proof:  First we take 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) so that 𝑎 = 𝑘𝑛 + 𝑏 for some integer k. Upon 

division by n, b leaves a certain remainder r; that is, 𝑏 = 𝑞𝑛 + 𝑟   where 0 ≤ 𝑟 ≤

𝑛. 

Therefore, a= 𝑏 + 𝑘𝑛 = (𝑞𝑛 + 𝑟) + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟 

Which indicates that ‘a’ has the remainder as ’b’. On the other hand, suppose we 

can write 𝑎 = 𝑞1𝑛 + 𝑟 𝑎𝑛𝑑 𝑏 = 𝑞2𝑛 + 𝑟, with the same remainder r(0 ≤ 𝑟˂𝑛). 

Then 𝑎 − 𝑏 = (𝑞1𝑛 + 𝑟) − (𝑞2𝑛 + 𝑟) = (𝑞1 − 𝑞2)𝑛 

Hence 𝑛/𝑎 − 𝑏. In the language of congruence, we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛). 

Theorem 1.2 

Let 𝑛 > 1 be fixed and a,b,c,d are arbitrary integers. Then the following properties 

hold: 

a) 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑛) 

b) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛) 

c) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑛), then 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑛) 

d) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛), then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛) and 𝑎𝑐 ≡

𝑏𝑑(𝑚𝑜𝑑 𝑛) 

e) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑎 + 𝑐 ≡ 𝑏 + 𝑐(𝑚𝑜𝑑 𝑛) and 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 𝑛) 

f) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑎𝑘 ≡ 𝑏𝑘(mod n) for any positive integer k. 

 

Example 1.1:- Let us try to show that 41 divides  220 − 1. 

 We begin by noting that 25 ≡ −9(mod 41), when  (25) 4 ≡ (−9)(𝑚𝑜𝑑 41)4  by 

Theorem 1.2; in other words 220 ≡ 81.81(mod 41). But 81≡ −1(mod 41), and 

so 81.81≡ 1(mod 41) using parts (b) and (e) of theorem 1.2, we final arrive at 

220-1≡81.81-1≡1-1(mod 41) 
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Thus, 41/220-1 

Theorem 1.3: 

 If ca≡ cb(mod n), then a≡ b (mod
n

2
) , 𝑤ℎ𝑒𝑟𝑒  d=gcd(c,n). 

Proof:- By hypothesis, we can write  

𝑐(𝑎 − 𝑏) − 𝑐𝑎 − 𝑐𝑏 = 𝑘𝑛 for some integer k knowing that 𝑔𝑐𝑑(𝑐, 𝑛) = 𝑑, there 

exixt relatively prime integers r and s satisfying 𝑐 = 𝑑𝑟, 𝑛 = 𝑑𝑠. When thse values 

are substituted in the equation above and the common factor d cancelled, the net 

result is, 

                 𝑟(𝑎 − 𝑏) = 𝑘𝑠 

Hence, 𝑠/𝑟(𝑎 − 𝑏) and 𝑔𝑐𝑑(𝑟, 𝑠) = 1. Euclid’s Lemma yields [If a/bc 

with 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then a/c] s/a-b, which may be recast as a≡ b(mod s); in other 

words, a≡ b (mod
n

d
). Theorem 1.3 gets its maximum force when the requirement 

that 𝑔𝑐𝑑(𝑐, 𝑛) = 1 is added , for then the cancellation many be accomplished 

without a change in modules. 

Corollary 1 : 

If  ca≡ cb(mod n) and gcd(c,n)=1 then a≡ b(mod n). 

Corollary 2: 

If ca≡ cb(mod p) and p×c. Where, p is a prime number. Then a≡ b(mod p). 
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CHAPTER-2 

THE THEORY OF CONGRUENCES 

 

BINARY AND DECIMAL REPRESENTATIONS OF INTEGERS 

One of the more interesting applications of congruence theory involves 

finding special criteria under which a given integer is divisible by another integer. 

These divisibility tests depend on the notational system used to assign ‘names’ to 

integers and, more particularly, to the fact that 10 is taken as the base for our 

number system. Therefore, let us start by showing that given an integer 𝑏 >  1, 

any positive integer N can be written uniquely in terms of powers of b as 

𝑁 = 𝑎𝑚𝑏𝑚 + 𝑎𝑚−1𝑏𝑚−1 + ⋯ + 𝑎2𝑏2 + 𝑎1𝑏 + 𝑎0 

where the coefficients′𝑎𝑘′can take on the ‘b’ different values 0,1,2,...,b−1. For the 

Division Algorithm yields integers ′𝑞1′and′𝑎0′satisfying  

N =𝑞1𝑏+𝑎0, 0≤𝑎0< b  

If q1 ≥b, we can divide once more, obtaining  

𝑞1 = 𝑞2𝑏 + 𝑎1, 0≤𝑎1< b  

Now substitute for 𝑞1in the earlier equation to get; 

𝑁 = (𝑞2𝑏 + 𝑎1)𝑏 + 𝑎0 =  𝑞2𝑏2 + 𝑎1𝑏 + 𝑎0 

 As long as 𝑞2≥b, we can continue in the same fashion. Going one more step: 𝑞2 =

𝑞3𝑏 + 𝑎2, where 0 ≤ 𝑎2 < 𝑏, 

Hence  

𝑁 = 𝑞3𝑏3  + 𝑎2𝑏2  + 𝑎1𝑏 + 𝑎0 

Because 𝑁 > 𝑞1 > 𝑞2 > ···≥ 0 is a strictly decreasing sequence of integers, this 

process must eventually terminate, say, at the (m−1)𝑡ℎ stage, where 

𝑞𝑚−1=𝑞𝑚b+𝑎𝑚−1 ; 0≤𝑎𝑚−1< b and 0≤𝑞𝑚< b.  

Setting 𝑎𝑚=𝑞𝑚, we reach the representation 

 N =𝑎𝑚𝑏𝑚+𝑎𝑚−1𝑏𝑚−1 +………+𝑎1𝑏 + 𝑎0 
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which was our aim. 

  To show uniqueness, let us suppose that N has two distinct representations, 

say,  

𝑁 = 𝑎𝑚𝑏𝑚  +··· +𝑎1𝑏 + 𝑎0  = 𝑐𝑚𝑏𝑚 +··· +𝑐1𝑏 + 𝑐0 with 0≤𝑎𝑖< b for each i and 

0≤𝑐𝑗< b for each j (we can use the same m by simply adding terms with coefficients 

𝑎𝑖  =0 or 𝑐𝑗 =0, if necessary). Subtracting the second representation from the first 

gives the equation 0=𝑑𝑚𝑏𝑚 +···+𝑑1𝑏b+𝑑0 

where 𝑑1=𝑎1 −𝑐𝑖 for i =0,1,...,m. Because the two representations for N are 

assumed to be different, we must have 𝑑𝑖 ≠ 0 for some value of i. Take k to be the 

smallest subscript for which𝑑𝑘 ≠ 0. Then  

0=𝑑𝑚𝑏𝑚+ ………+𝑑𝑘+1𝑏𝑘+1 + 𝑑𝑘𝑏𝑘 and so, after dividing by 𝑏𝑘, 

𝑑𝑘 = − 𝑏(𝑑𝑚𝑏𝑚−𝑘−1+···+𝑑𝑘+1) 

This tells us that 𝑏/𝑑𝑘. Now the inequalities 0 ≤ 𝑎𝑘 ≤ 𝑏 and 0 ≤  𝑐𝑘 <  𝑏 

lead us to −𝑏 < 𝑎𝑘 −  𝑐𝑘 <  𝑏, or |𝑑𝑘|  <  𝑏. The only way of reconciling the 

conditions 𝑏/𝑑𝑘 and |𝑑𝑘|  <  𝑏 is to have 𝑑𝑘=0, which is impossible. From this 

contradiction, we conclude that the representation of N is unique. Smaller values 

of 5 

For example, base b=2, gives the result of numbers only with 0’s and 1’s, 

For example:- 105=1·26 +1·25 +0·24 +1·23 +0·22 +0·2+1 =26 +25 +23 +1 (sum of 

distinct powers of 2) in Abbreviated form, 

 105=(1101001)2 

We shall frequently wish to calculate the value of 𝑎𝑘(mod n) when k is large. 

Is there a more efficient way of obtaining the least positive residue than 

multiplying a by itself k times before reducing modulo n? One such procedure, 

called the binary exponential algorithm, relies on successive squaring, with a 

reduction modulo n after each squaring. More specifically, the exponent k is 

written in binary form, as k =(𝑎𝑚𝑎𝑚−1 ...𝑎2𝑎1𝑎0)2, and the values 𝑎2𝑗(mod n) are 

calculated for the powers of 2, which correspond to the 1’s in the binary 

representation. These partial results are multiplied together to get the final 

results.  
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Let’s look an example of this; 

Example:- To calculate 5110 (mod 131), first note that the exponent 110 can be 

expressed in binary form as 110=64+32+8+4+2=(1101110)2 

Thus, we obtain the powers 52𝑗
 (mod131) for 0 ≤  𝑗 ≤ 6 by repeatedly squaring 

while at each stage reducing each result modulo 131: 

52≡ 25 (mod131)  516≡ 27 (mod131) 

54 ≡101 (mod131) 532≡ 74 (mod131) 

 58≡114 (mod131) 564≡105 (mod131)  

When the appropriate partial results-those corresponding to the 1’s in the binary 

expansion of 110-are multiplied, we see that  

5110= 564+32+4+2 

=  564. 532. 58. 54. 52  

= 105 · 74 · 114 · 101 · 25 ≡ 60 (𝑚𝑜𝑑131)   

As a minor variation of the procedure, one might calculate, modulo131, the 

powers  

5,52,53,56,512,524,548,596 to arrive at 

5110=596 ·512 ·52 ≡41·117·25≡60 (mod131)  

which require two fewer multiplications. 

 We ordinarily record numbers in the decimal system of notation, where b 

=10, omitting the 10-subscript that specifies the base. For instance, the symbol 

1492 stands for the more awkward expression  

1·103 +4·102 +9·10+2  

The integers 1, 4, 9, and 2 are called the digits of the given number. 1 being the 

thousands digit, 4 the hundreds digit, 9 the tens digit, and 2 the units digit. In 

technical language we refer to the representation of the positive integers as sums 

of powers of 10, with coefficients at most 9, as their decimal representation (from 

the Latin decem, ten). We are about ready to derive criteria for determining 

whether an integer is divisible by 9 or 11, without performing the actual division. 

For this, we need a result having to do with congruences involving polynomials 

with integral coefficients. 
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Theorem 2.1  

Let P(x)= ∑ 𝑐𝑘𝑥𝑘𝑛

𝑘=0
 be a polynomial function of x with integral coefficients 𝑐𝑘, If 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) , then 𝑃(𝑎) ≡  𝑃(𝑏) (𝑚𝑜𝑑 𝑛). 

Proof :- 

 Because 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛), from part (f) of Theorem in 1st chapter, 

(that is, if a≡b (mod n), then 𝑎𝑘 ≡ 𝑏𝑘(𝑚𝑜𝑑 𝑛)for any positive integer k) 

𝑎𝑘 ≡ 𝑏𝑘(𝑚𝑜𝑑 𝑛) for k =0,1,...,m.  

Therefore, 𝑐𝑘𝑎𝑘≡𝑐𝑘𝑏𝑘 (𝑚𝑜𝑑 𝑛) for all such k.  

Adding these 𝑚 + 1 congruences, we conclude that  

∑ 𝑐𝑘𝑎𝑘𝑛

𝑘=0
 ≡∑ 𝑐𝑘𝑏𝑘𝑛

𝑘=0
(𝑚𝑜𝑑 𝑛) 

                                           Or  

𝑃(𝑎) ≡  𝑃(𝑏) (𝑚𝑜𝑑 𝑛). 

If P(a) is a polynomial with integral co-efficients, we say that a is a solution of the 

congruence 𝑃(𝑥) ≡  0(𝑚𝑜𝑑 𝑛), if 𝑃(𝑎) ≡  0(𝑚𝑜𝑑 𝑛) 

Corollary: 

If a is a solution of 𝑃(𝑥) ≡  0(𝑚𝑜𝑑 𝑛) and 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then, b also is a 

solution.  

Proof :-  

By last Theorem, it’s known that 𝑃(𝑎)  ≡  𝑃(𝑏) (𝑚𝑜𝑑 𝑛). Hence if a is a solution 

of 𝑃(𝑥) ≡  0(𝑚𝑜𝑑 𝑛), 

Then 𝑃(𝑏)  ≡  𝑃(𝑎)  ≡  0 (𝑚𝑜𝑑 𝑛), making b a solution. 

This is one of the divisibility test that we have a positive integer is divisible by 9 if 

and only if the sum of the digits in its decimal representation is divisible by 9. 

 

 

 

Theorem 2.2:- 
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Let 𝑁 = 𝑎𝑚10𝑚 +  𝑎𝑚−110𝑚−1+. . . . . . . . . +𝑎110 +  𝑎0 be the decimal 

expansion of the positive integer N, 0 ≤  𝑎𝑘 <  10, and let S =𝑎0+𝑎1+···+𝑎𝑚. 

Then 9/𝑁 if and only if 9/𝑆. 

Proof:-  

Consider 𝑃(𝑥) = ∑ 𝑎𝑘𝑥𝑘𝑛

𝑘=0
, a polynomial with integral coefficients. The key 

observation is that 10 ≡1 (mod 9), whence by Theorem 2.1,  𝑃(10) ≡

 𝑃(1) (𝑚𝑜𝑑 9). But 𝑃(10) =  𝑁 and 𝑃(1) = 𝑎0 + 𝑎1 +··· +𝑎𝑚 =  𝑆, so that 𝑁 ≡

 𝑆 (𝑚𝑜𝑑 9). It follows that 𝑁 ≡ 0 (𝑚𝑜𝑑 9) if and only if 𝑆 ≡ 0 (𝑚𝑜𝑑 9), which is 

what we wanted to prove. 

Theorem2.1 also serves as the basis for a well-known test for divisibility by 11: an 

integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 

11. We state this more precisely by Theorem 2.3. 

Theorem 2.3  

Let N =𝑎𝑚10𝑚+ 𝑎𝑚−110𝑚−1+. . . . . . . . . +𝑎110 + 𝑎0be the decimal expansion of 

the positive integer N,0 ≤  𝑎𝑘 <  10, and let T =𝑎0-𝑎1+𝑎2···+(-1)𝑚𝑎𝑚 

Then 11/𝑁 if and only if 11/𝑇. 

Proof:- 

 As in the proof of Theorem 4.5, put P(x)=∑ 𝑎𝑘𝑥𝑘𝑚

𝑘=0
.Because  

10≡− 1 (mod 11), 

 we get P(10)≡ P(−1) (mod 11). But P(10)= N,  

whereas P(−1)= 𝑎0-𝑎1+𝑎2···+(-1)𝑚𝑎𝑚= T, so that N ≡ T (mod 11). The implication 

is that either both N and T are divisible by 11 or neither is divisible by 11. 

Example: - To see the illustration of the last two results, consider the integer N 

=1,571,724. Because the sum 1+5+7+1+7+2+4=27 is divisible by 9,  

Theorem 2.2 guarantees that 9 divides N. It also can be divided by 11; for, the 

alternating sum 4−2+7−1+7−5+1=11, is divisible by 11. 

 

 

 



 
 

15 
 

LINEAR CONGRUENCES AND THE CHINESE REMAINDER THEOREM 

An equation of the form 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) is called a linear congruence and 

by a solution of such an equation, we mean an integer 𝑥0for which 𝑎𝑥0≡b (mod n). 

By definition, 𝑎𝑥0
≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛/𝑎𝑥0

− 𝑏 or, what amounts to the 

same thing, if and only if 𝑎𝑥0-b =𝑛𝑦0 for some integer 𝑦0. Thus, the problem of 

finding all integers that will satisfy the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) is 

identical with that of obtaining all solutions of the linear Diophantine 

equation 𝑎𝑥 − 𝑛𝑦 = 𝑏. This allows us to bring the results of Divisibility Theory in 

integers.  

        It is convenient to treat two solutions of 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) that are congruent 

modulo n as being “equal” even though they are not equal in the usual sense. For 

instance, x =3 and x =−9 both satisfy the congruence 3𝑥 ≡ 9 (𝑚𝑜𝑑 12); 

because 3 ≡ −9(𝑚𝑜𝑑 12), they are not counted as different solutions. In short, 

when we refer to the number of solutions of 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛), we mean the 

number of incongruent integers satisfying this congruence. 

Theorem 2.4:- 

The linear congruence 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛)has a solution if and only if d/b, where 𝑑 =

 𝑔𝑐𝑑(𝑎, 𝑛). If d/b, then it has d mutually incongruent solutions modulo n. 

Proof: - We already have observed that the given congruence is equivalent to the 

linear Diophantine equation 𝑎𝑥−𝑛𝑦=b. It is known that the latter equation can be 

solved if and only if d/b, moreover if it is solvable and 𝑥0, 𝑦0 is one specific solution, 

then any other solution has the form  

𝑥 =  𝑥0 +  (𝑛/𝑑)𝑡𝑦 =  𝑦0 +  (𝑎/𝑑)𝑡  

for some choice of t.  

Among the various integers satisfying the first of these formulas, consider those 

that occur when t takes on the successive values, 

 t =0,1,2,...,d −1; 

𝑥0, 𝑥0+ n/d,𝑥0 + (2n /d),...,x0 + (d −1)n/d  

We claim that these integers are incongruent modulo n, and all other such integers 

x are congruent to some one of them. If it happened that, 

𝑥0+ (n/2) 𝑡1≡𝑥0+ (n/2) 𝑡2(𝑚𝑜𝑑 𝑛) 

where 0≤ 𝑡1<𝑡2≤d −1, then we would have  
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(n/d) 𝑡1≡(n/2) 𝑡2 (mod n) 

Now 𝑔𝑐𝑑((𝑛/𝑑), 𝑛) and therefore by Theorem 1.3 the factor n/d could be 

cancelled to arrive at the congruence  

t1 ≡t2 (mod d) 

which is to say that d(t2 −t1). But this is impossible in view of the inequality 0 < t2 

−t1 < d. It remains to argue that any other solution 𝑥0+(n/d)t is congruent modulo 

n to one of the d integers listed above. The Division Algorithm permits us to write 

t as t =qd+r, where 0≤r ≤d −1. Hence  

𝑥0+(n/d)t = 𝑥0+(n/d)(qd+r) 

= 𝑥0+nq+(n/d)r 

≡ 𝑥0+(n/d)r (mod n) 

with 𝑥0+(n/d)rbeing one of our d selected solutions. Hence the proof.  

 

The argument that we gave in the above theorem; brings out a point worth stating 

explicitly: If𝑥0 is any solution of 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then the 𝑑 =

 𝑔𝑐𝑑(𝑎, 𝑛)incongruent solutions are given by  

𝑥0: 𝑥0+(n/d)𝑥0+2(n/d),. . . . . .,𝑥0+(d-1)(n/d) 

Corollary: 

If 𝑔𝑐𝑑(𝑎, 𝑛) = 1, then the linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) has a unique 

solution modulo n.  

Given relatively prime integers a and n, the congruence 𝑎𝑥 ≡ 1 (𝑚𝑜𝑑 𝑛) 

has a unique solution. This solution is sometimes called the (multiplicative) inverse 

of 𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛.  

Let’s look at 2 different examples, 

Example:-  

First consider the linear congruence18𝑥 ≡  30(𝑚𝑜𝑑 42). Because 𝑔𝑐𝑑(18,42) =

 6 and 6 surely divides 30.Theorem 2.4 guarantees the existence of exactly 6 

solutions, which are incongruent modulo 42. By inspection, one solution is found 

to be x =4. Our analysis tells us that the 6 solutions are as follows: 

x ≡4+(42/6)t ≡4+7t (mod 42)   ;        t=0,1,...,5  
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                                   or 

x ≡4,11,18,25,32,39(mod 42) 

Example:- 

 Let us solve the linear congruence  

9𝑥 ≡ 21 (𝑚𝑜𝑑 30). 

 At the outset, because  

𝑔𝑐𝑑(9,30) = 3 and 3/21, we know that there must be three incongruent 

solutions. 

One way to find these solutions is to divide the given congruence through by 3, 

thereby replacing it by the equivalent congruence 3𝑥 ≡ 7 (𝑚𝑜𝑑 10). The relative 

primeness of 3 and 10 implies that the latter congruence admits a unique solution 

modulo 10. 

Although it is not the most efficient method, we could test the integers0, 1, 2,..., 9 

in turn until the solution is obtained. A better way is that, multiply both sides of 

the congruence 3𝑥 ≡ 7 (𝑚𝑜𝑑 10) by 7 to get  

21𝑥 ≡ 49 (𝑚𝑜𝑑 10)  

Whichreduces to 𝑥 ≡ 9(𝑚𝑜𝑑10). 

Taking t =0, 1, 2, in the formula  

𝑥 = 9 + 10𝑡  

we obtain 9, 19, 29, whence  

𝑥 ≡ 9 (𝑚𝑜𝑑 30),𝑥 ≡ 19 (𝑚𝑜𝑑 30) , 𝑥 ≡ 29 (𝑚𝑜𝑑 30) are the required 3 

solutions of 9𝑥 ≡ 21 (𝑚𝑜𝑑 30).  

Use the method in the proof of Theorem 2.4 

9𝑥 ≡ 21(𝑚𝑜𝑑 30)    (Linear Diophantine Equation) 

We begin by expressing 3 = 𝑔𝑐𝑑(9,30) as a linear combination of 9 and 30.It is 

for either by inspection or by using the Euclidean Algorithm, that 3=9(−3)+30·1, so 

that 

 21 = 7 · 3 = 9(−21) − 30(−7)  

 Thus, x =−21 
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 y =−7 

 satisfied the Diophantine solution  

And now all solutions of the congruence has to be found  

x =−21+(30/3)t =−21+10t  

The integers 

x =−21+10t  

where t=0,1,2,are incongruent modulo 30(but all are congruent modulo 10); Thus, 

we end up with the incongruent solutions 

x ≡−21 (mod 30) x ≡−11 (mod 30) x ≡−1 (mod 30) or, if one prefers positive 

numbers, 

 x ≡9,19,29 (mod 30).  

Theorem 2.5:- Chinese Remainder Theorem 

Let𝑛1, 𝑛2 ,...,𝑛𝑟 bepositiveintegers such that gcd(𝑛𝑖,𝑛𝑗)=1 for 𝑖 ≠  𝑗. Then the 

system of linear congruences, 

𝑥 ≡  𝑎1(𝑚𝑜𝑑𝑛2)  

𝑥 ≡ 𝑎2 (𝑚𝑜𝑑𝑛2) 

                            

  . . . . . . . 

 . . . . . . . 

 . . . . . . . 

𝑥 ≡ 𝑎𝑟  (𝑚𝑜𝑑𝑛𝑟) 

Has a simultaneous solution, which is unique modulo the integer 𝑛1𝑛2···𝑛𝑟.  

Proof:- 

 We start by forming the product  

n =𝑛1𝑛2···𝑛𝑟. 

 For each 𝑘 = 1,2, . . . , 𝑟, let 𝑁𝑘= n/𝑛𝑘=𝑛1···𝑛𝑘−1𝑛𝑘+1···𝑛𝑟 

Where, 𝑁𝑘 is the product of all the integers 𝑛𝑖 with factor 𝑛𝑘. By hypothesis, the 𝑛𝑖  

are relatively prime in pairs, so that 𝑔𝑐𝑑(𝑁𝑘 , 𝑛𝑘) = 1.According to the theory of a 
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single linear congruence, it is possible to solve the congruence 𝑁𝑘𝑥 ≡1 (mod 𝑛𝑘); 

call the unique solution 𝑥𝑘. Our aim is to prove that the integer  

                         x =𝑎1𝑁1𝑥1 +𝑎2𝑁2𝑥2 +···+𝑎𝑟𝑁𝑟𝑥𝑟 

is a simultaneous solution of the given system. 

First, observe that 𝑁𝑖≡0 (mod𝑛𝑘) for 𝑖 ≠ 𝑘, because 𝑛𝑘/𝑁𝑖  in this case. Theresult 

is,  

�̅� = 𝑎1𝑁1𝑥1+·· ·𝑎𝑟𝑁𝑟𝑥𝑟 ≡ 𝑎𝑘𝑁𝑘𝑥𝑘  (mod𝑛𝑘 ) But the integer 𝑥𝑘 was chosen to 

satisfy the congruence𝑁𝑘𝑥 ≡1 (mod 𝑛𝑘) which forces 

 �̅� ≡ 𝑎𝑘 ·1≡𝑎𝑘 (mod nk)  

Hence, the solution to the given system of congruences exists. As for the 

uniqueness assertion, suppose that 𝑥′ is any other integer that satisfies these 

congruences. Then, �̅� ≡ 𝑎𝑘  ≡ 𝑥′(𝑚𝑜𝑑 𝑛𝑘),  k =1,2,...,r 

and so  𝑛𝑘/ �̅� − 𝑥′ for each value of k. Because 𝑔𝑐𝑑( 𝑛𝑖  , 𝑛𝑗) = 1, 

Now,  𝑛1 𝑛2. . . 𝑛𝑟/�̅� − 𝑥′: hence 

𝑥 ≡  𝑥 (𝑚𝑜𝑑 𝑛).  

Hence the proof. 

Example:- 

Let’s take three congruences, 

 𝑥 ≡ 2 (𝑚𝑜𝑑 3)  

𝑥 ≡ 3 (𝑚𝑜𝑑 5) 

 𝑥 ≡ 2 (𝑚𝑜𝑑 7)  

According to Theorem 2.5, we have  

𝑛 = 3 · 5 · 7 = 105 and       𝑁1 =  𝑛/3 = 35       𝑁2 =  𝑛/5 = 21       𝑁3 =  𝑛/

7 = 15  

Now, the linear congruences, 

35𝑥 ≡ 1 (𝑚𝑜𝑑 3) 21𝑥 ≡ 1 (𝑚𝑜𝑑 5) 15𝑥 ≡ 1 (𝑚𝑜𝑑 7) are satisfied by 𝑥1=2, 

𝑥2=1, 𝑥3=1, respectively. Thus, a solution of the system is given by, 

x=2·35·2+3·21·1+2·15·1=233  
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Modulo 105, we get the unique solution 𝑥 = 233 ≡ 23 (𝑚𝑜𝑑 105). 

Theorem 2.6:- 

The system of linear congruences 

𝑎𝑥 + 𝑏𝑦 ≡ 𝑟 (𝑚𝑜𝑑 𝑛) 

𝑐𝑥 + 𝑑𝑦 ≡ 𝑠 (𝑚𝑜𝑑 𝑛) 

 has a unique solution modulo n whenever 𝑔𝑐𝑑(𝑎𝑑 − 𝑏𝑐, 𝑛) = 1.  

Proof:-Let us multiply the first congruence of the system by d, the second 

congruence by b, and subtract the lower result from the upper. These calculations 

yield  

(𝑎𝑑 − 𝑏𝑐)𝑥 ≡ 𝑑𝑟 − 𝑏𝑠 (𝑚𝑜𝑑 𝑛)  

The assumption 𝑔𝑐𝑑(𝑎𝑑 − 𝑏𝑐, 𝑛) = 1sures that the congruence   

(𝑎𝑑 − 𝑏𝑐)𝑧 ≡ 1 (𝑚𝑜𝑑 𝑛) possess a unique solution; denote the solution by t. 

When congruence (1) is multiplied by t, we obtain  

𝑥 ≡ 𝑡(𝑑𝑟 − 𝑏𝑠) (𝑚𝑜𝑑 𝑛)  

A value for y is found by a similar elimination process. That is, multiply the first 

congruence of the system by c, the second one by a, and subtract to end up with 

(𝑎𝑑 − 𝑏𝑐)𝑦 ≡  𝑎𝑠 − 𝑐𝑟 (𝑚𝑜𝑑 𝑛)  

Multiplication of this congruence by t leads to, 

 𝑦 ≡ 𝑡(𝑎𝑠 − 𝑐𝑟) (𝑚𝑜𝑑 𝑛)  

A solution of the system is now established. 

We close this section with an example. 

Example:- 

Consider the system, 

 7𝑥 + 3𝑦 ≡ 10 (𝑚𝑜𝑑 16) 

2𝑥 + 5𝑦 ≡ 9 (𝑚𝑜𝑑 16)  

Since 𝑔𝑐𝑑(7 · 5 − 2 · 3,16)  =  𝑔𝑐𝑑(29, 16)  =  1, a solution exists. It is obtained 

by the method developed in the proof of Theorem 4.9. Multiplying the first 

congruence by 5, the second one by 3, and subtracting, we arrive at, 

 29𝑥 ≡ 5 · 10 − 3 · 9 ≡ 23 (𝑚𝑜𝑑 16)  
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or, what is the same thing, 13𝑥 ≡ 7 (𝑚𝑜𝑑 16). Multiplication of this congruence 

by 5 (noting that 5 · 13 ≡ 1 (𝑚𝑜𝑑 16)) produces 𝑥 ≡ 35 ≡ 3 (𝑚𝑜𝑑 16). When 

the variable x is eliminated from the system of congruences in a like manner, it is 

found that  

29𝑦 ≡ 7 · 9 − 2 · 10 ≡ 43 (𝑚𝑜𝑑 16)  

But then 13𝑦 ≡ 11 (𝑚𝑜𝑑 16), which upon multiplication by 5, results in  

𝑦 ≡ 55 ≡  7 (𝑚𝑜𝑑 16). The unique solution of our system turns out to be, 

𝑥 ≡ 3 (𝑚𝑜𝑑 16)  , 𝑦 ≡ 7 (𝑚𝑜𝑑 16) 
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CHAPTER-3 

NUMBER THEORETIC FUNCTIONS 

 

THE SUM AND NUMBER OF DIVISORS 

Certain functions are found to be of special importance in connection with 

the study of the divisors of an integer. Any function whose domain of definition is 

the set of positive integers is said to be a number-theoretic (or arithmetic) 

function. Although the value of a number-theoretic function is not required to be 

a positive integer or, for that matter, even an integer,most of the number-

theoretic functions that we shall encounter are integer-valued. Among the easiest 

to handle, and the most natural, are the functions 𝜏 and 𝜎. 

Definition 3.1:- 

Given a positive integer n, let 𝜏(𝑛) denote the number of positive divisors of n and 

𝜎(𝑛) denote the sum of these divisors. 

 

For an example of these notations, consider n =12. Because 12 has the positive 

divisors 1, 2, 3, 4, 6, 12, we find that 

𝜏(12) = 6 and 𝜎(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28  

𝜏(𝑛) = 2 if and only if n is a prime number also, 𝜎(𝑛) = 𝑛 + 1 if and only if n is a 

prime.  

Before studying the functions 𝜏 and 𝜎, we introduce notation that will clarify a 

number of situations later. It is customary to interpret the symbol  

∑ 𝑓(𝑑)

 

𝑑/𝑛

 

to mean, “Sum the values f(d) as d runs over all the positive divisors of the positive 

integer n”. 
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 For instance, we have 

∑ 𝑓(𝑑) 
𝑑/20  = f(1)+ f(2)+ f(4)+ f(5)+ f(10)+ f(20), 𝜏 and 𝜎 may be expressed in the 

form 

 𝜏(𝑛)  =  ∑ 1 
𝑑/𝑛    𝜎(𝑛) = ∑ 𝑑 

𝑑/𝑛   

To illustrate: the integer 10 has the four positive divisors 1, 2, 5, 10. 

                τ(10)= ∑ 1 = 1 + 1 + 1 + 1 = 4  
𝑑/10   

 𝜎(10) = ∑ 𝑑 
𝑑/10  = 1 + 2 + 5 + 10 = 18  

Theorem 3.1:-  

If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟  is the prime factorization of 𝑛 >  1, then the positive divisors 

of n are precisely those integers d of the form 𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟where 0 ≤ 𝑎𝑖 ≤

𝑘𝑖  (i =1,2,...,r).  

Proof:- 

 The divisor d =1 is obtained when 𝑎1= 𝑎2 =···=𝑎𝑟=0, and n itself occurs when  

𝑎1=𝑘1, 𝑎2=𝑘2,..., 𝑎𝑟=𝑘𝑟. Suppose that d divides n trivially; say, n𝑛 = 𝑑𝑑′, where 

𝑑 >  1, 𝑑′ >  1. Express both 𝑑 and 𝑑′  as products of (not necessarily distinct) 

primes: 𝑑 = 𝑞1𝑞2 …….𝑞𝑠 𝑑 ′ = 𝑡1 𝑡2 ……. 𝑡𝑢  

with 𝑞𝑖 , 𝑡𝑗 prime. Then, 

𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟  = 𝑞1 … … 𝑞𝑠𝑡1 . . . . 𝑡𝑢  

are two prime factorizations of the positive integer n. By the uniqueness of the 

prime factorization, each prime 𝑞𝑖  must be one of the𝑝𝑗. Collecting the equal 

primes into a single integral power, we get  

d = 𝑞1𝑞2……….𝑞𝑠= 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟   where the possibility that 𝑎𝑖=0 is allowed.  

Conversely, every number d = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟(0≤𝑎𝑖≤𝑘𝑖) turns out to be a divisor of 

n. For we can write  

𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟  

 

= (𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟)(𝑝1

𝑘1−𝑎1𝑝2
𝑘2−𝑎2 … 𝑝𝑟

𝑘𝑟−𝑎𝑟) 

= 𝑑𝑑′ 
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With 𝑑′ = 𝑝1
𝑘1−𝑎1𝑝2

𝑘2−𝑎2 … 𝑝𝑟
𝑘𝑟−𝑎𝑟 and 𝑘𝑖 − 𝑎𝑖≥ 0 for each i. 

Then 𝑑′  ˃ 0 and 𝑑/𝑛. 

Theorem3.2:- 

If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟 is the prime factorization of n>1, then  

(a) 𝛾(𝑛) = (𝑘1  +  1)(𝑘2  +  1) . . . . . . . (𝑘𝑟 +  1) and  

(b) 𝜎(𝑛) =
𝑝1

𝑘1+1
−1

𝑝1−1

𝑝2
𝑘2+1

−1

𝑝2−1
…

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 

Proof:- 

 According to Theorem 3.1, the positive divisors of n are precisely those integers  

𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟  

where 0 ≤ 𝑎ᵢ ≤ 𝑘ᵢ. 

 There are 𝑘₁ + 1 choices for the exponent 𝑎₁ , 𝑘₂ + 1 choices for 𝑎2 and 𝑘ᵣ +  1 

choices for 𝑎ᵣ. Hence, there are  

(𝑘₁ + 1)(𝑘₂ +  1). . . (𝑘ᵣ +  1)  

possible divisors of n.  

To evaluate 𝜎(𝑛), consider the product 

 (1 + 𝑝1 + 𝑝1
2 + ⋯ + 𝑝1

𝑘1)(1 + 𝑝2 + 𝑝2
2 + ⋯ 𝑝2

𝑘2) … (1 + 𝑝𝑟 + 𝑝𝑟
2 + ⋯ + 𝑝𝑟

𝑘𝑟) 

Each positive divisor of n appears once and only once as a term in the expansion 

of this product, so that  

𝜎(𝑛) =  (1 + 𝑝1 + 𝑝1
2 + ⋯ + 𝑝1

𝑘1) … (1 + 𝑝𝑟 + 𝑝𝑟
2 + ⋯ + 𝑝𝑟

𝑘𝑟)  

Applying the formula for the sum of a finite geometric series to the 𝑖𝑡ℎ factor on 

the right-hand side, we get 

1 + 𝑝𝑖 + 𝑝𝑖
2 + ⋯ + 𝑝𝑖

𝑘𝑖 =
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
 

𝜎(𝑛) =
𝑝1

𝑘1+1
− 1

𝑝1 − 1

𝑝2
𝑘2+1

− 1

𝑝2 − 1
…

𝑝𝑟
𝑘𝑟+1

− 1

𝑝𝑟 − 1
 

If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟  is the prime factorization of n > 1, then  
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 𝛾(𝑛) = ∏ (𝑘𝑖 + 1)

1≤𝑖≤𝑟

  

And 

𝜎(𝑛) =  ∏
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
1≤𝑖≤𝑟

 

 

Example:- 

The number 180 = 2².3².5 has  

𝛾(180) =  (2 + 1)(2 + 1)(1 + 1) = 18 positive divisors.  

These are the integers of the form  

2𝑎13𝑎25𝑎3  

Where 𝑎1=0,1,2 ,𝑎2=0,1,2 and 𝑎3 = 0,1  

We obtain 1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180.  

The sum of the integers is  

𝜎(180) = (23 − 1)/(2 − 1) (33−1)/(3 − 1) (52 − 1)/(5 − 1) 

= (7/1)(26/2)(24/4) 

= 7.13.6 = 546 

Definition 3.2 :- 

A number theoretic function f is said to be multiplicative if 

 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) 

Whenever 𝑔𝑐𝑑 (𝑚, 𝑛) = 1 and if 𝑓 is not identically zero. 

Theorem3.3 :- 

The function 𝛾 and 𝜎 are both multiplicative function 

Proof:-  

Let m and n be relatively prime integers. Because the result is trivially true if either 

m or n is equal to 1, we may assume that 𝑚 >  𝐼 and 𝑛 >  1.If  
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𝑚 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟  

                                       and  

𝑛 =  𝑞1
𝑗1𝑞2

𝑗2 … 𝑞𝑠
𝑗𝑠 

are the prime factorizations of m and n, then because 𝑔𝑐𝑑(𝑚, 𝑛) = 1, no 𝑝ᵢ can 

occur among the 𝑞ⱼ. It follows that the prime factorization of the product mn is 

given by 𝑚𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑟
𝑘𝑟𝑞1

𝑗1𝑞2
𝑗2 … 𝑞𝑠

𝑗𝑠 

Applying theorem 3.2,we obtain  

𝛾(𝑚, 𝑛) = [(𝑘1  +  1) … (𝑘𝑟  +  1)][(𝑗1  +  1) … (𝑗𝑠  +  1)]  

=  𝛾(𝑚)𝛾(𝑛)  

Similarly , 

𝜎(𝑚, 𝑛) = [(𝑝1
𝑘1+1

− 1)/(𝑝1 − 1). . . . (𝑝𝑟
𝑘𝑟+1

− 1)/(𝑝𝑟 − 1)][(𝑞1
𝑗1+1

− 1)/(𝑞1

− 1). . . . (𝑞𝑠
𝑗𝑠+1

− 1)/(𝑞𝑠 − 1)] 

=  𝜎(𝑚)𝜎(𝑛)  

Thus 𝛾 and 𝜎 are multiplicative functions. 

Lemma:-  

If 𝑔𝑐𝑑(𝑚, 𝑛) =  1, then the set of positive divisors of mn consists of all products 

𝑑₁𝑑₂, where 𝑑₁ |𝑚, 𝑑₂|𝑛 and 𝑔𝑐𝑑(𝑑₁, 𝑑₂)  =  1; furthermore, these products are 

all distinct. 

Proof :- Assume that m>1 and n>1. 

Let m= 𝑝1
𝑘1𝑝2

𝑘2. . . 𝑝𝑟
𝑘𝑟and n= 𝑞1

𝑗1
𝑞2

𝑗2
. . . 𝑞𝑠

𝑗𝑠
 be their respective prime factorizations. 

The primes 𝑝₁, 𝑝₂, . . . 𝑝ᵣ, 𝑞₁, 𝑞₂, . . . 𝑞𝑠 are all distinct, the prime factorization of 𝑚𝑛 

is, 

𝑚𝑛 =  𝑝1
𝑘1. . . 𝑝𝑟

𝑘𝑟𝑞1
𝑗1

. . . 𝑞𝑠
𝑗𝑠

 

 

Hence, any positive divisor d of 𝑚𝑛 will be uniquely representable in the form  

d=𝑝1
𝑘1. . . 𝑝𝑟

𝑘𝑟𝑞1
𝑗1

. . . 𝑞𝑠
𝑗𝑠

, 0 ≤ 𝑎ᵢ ≤ 𝑘ᵢ , 0 ≤ 𝑏ᵢ ≤ 𝑗ᵢ  
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This allows us to write d as 𝑑 = 𝑑₁𝑑₂, where 𝑑₁ =  𝑝1
𝑎1. . . 𝑝𝑟

𝑎𝑟divides m and 𝑑2 =

 𝑞1
𝑏1. . . 𝑞𝑠

𝑏𝑠divides n. Because no 𝑝𝑖  is equal to any 𝑞𝑗, we surely must have 

𝑔𝑐𝑑(𝑑1, 𝑑2) = 1. 

Theorem3.4:- 

If f is a multiplicative function and f is defined by  

𝐹(𝑛) =  ∑ 𝑓(𝑑)

𝑑|𝑛

 

then 𝐹 is also multiplicative 

Proof:- Let m and n be relatively prime positive integers. Then  

𝐹(𝑚𝑛) =  ∑ 𝑓(𝑑)

𝑑|𝑚𝑛

 

=  ∑ 𝑓(𝑑1𝑑2)
𝑑|𝑛
𝑑|𝑚

 

 

Because every divisor d of mn can be uniquely written as a product of a divisor 𝑑₁ 

of m and a divisor 𝑑₂ of n, where 𝑔𝑐𝑑(𝑑₁, 𝑑₂)  =  1. By the definition of a 

multiplicative function,  

𝑓(𝑑₁𝑑₂) =  𝑓(𝑑₁)𝑓(𝑑₂)  

It follows that 

𝐹(𝑚𝑛) = ∑ 𝑓(𝑑1)𝑓(𝑑2)

𝑑1|𝑚
𝑑2|𝑛

 

= ( ∑ 𝑓(𝑑1)

𝑑1|𝑚

) ( ∑ 𝑓(𝑑2)

𝑑2|𝑛

) 
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Example :- 

Let m= 8 and n = 3,  

we have,  

F(8.3) = ∑ f(d)d|24   

=  𝑓(1) +  𝑓(2) +  𝑓(3) +  𝑓(4) +  𝑓(6) +  𝑓(8)  +  𝑓(12) +  𝑓(24)   

=  𝑓(1.1 +  𝑓(2.1) +  𝑓(1.3) +  𝑓(4.1) +  𝑓(2.3) + 𝑓(8.1) +  𝑓(4.3) +  𝑓(8.3)  

= 𝑓(1)𝑓(1) +  𝑓(2)𝑓(1) +  𝑓(1)𝑓(3) +  𝑓(4)𝑓(1) +  𝑓(2)𝑓(3) + 𝑓(8)𝑓(1) +

 𝑓(4)𝑓(3) +  𝑓(8)𝑓(3)  

= [𝑓(1) + 𝑓(2) + 𝑓(4) +  𝑓(8)][𝑓(1) +  𝑓(3)]  

= ∑ 𝑓(𝑑)𝑑|8 . ∑ 𝑓(𝑑)𝑑|3   

= 𝐹(8)𝐹(3)   

By theorem3.4. , the conclusion that 𝛾 and 𝜎 are multiplicative. 

Corollary:- 

The functions 𝛾 and 𝜎 are multiplicative functions  

Proof:- 

The constant function 𝑓(𝑛) =  1 is multiplicative, as is the identity function 

𝑓(𝑛)  =  𝑛. Because 𝛾 and 𝜎 may be represented in the form  

𝛾(𝑛) = ∑ 1𝑑|𝑛  and 𝜎(𝑛) = ∑ 𝑑𝑑|𝑛  

Hence it follows from theorem3.4  

 

3.2 THE MÖBIUS INVERSION FORMULA  

We introduce another naturally defined function on the positive integers, the 

Möbius 𝜇-function.  

Definition 3.3:- For a positive integer n, define μ by the rules   

𝜇(𝑛) = {

1                                                         𝑖𝑓 𝑛 = 1

0                     𝑖𝑓 𝑝2|𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝𝑟𝑖𝑚𝑒 𝑝

(−1)𝑟         𝑖𝑓 𝑛 = 𝑝1𝑝2 … 𝑝𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖  𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑟𝑖𝑚𝑒𝑠
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It states that 𝜇(𝑛)  =  0 if n is not a square-free integer, whereas 𝜇(𝑛)  = (−1)ʳ . 

If n is square-free with 𝑟 prime factors.  

For example: 𝜇(30) = 𝜇(2.3.5) = (−1)³ =  −1. The first few values of 𝜇 are  

𝜇(1) =  1 𝜇(2) =  −1 𝜇(3)  = −1 𝜇(4)  =  0 𝜇(5) = −1 𝜇(6)  =  1 . ..  

If p is a prime number, it is clear that μ(p) = -1 ; In addition,  

𝜇(𝑝ᵏ)  =  0 𝑓𝑜𝑟 𝑘 ≥ 2 . 

Theorem3.5:- 

The function μ is a multiplicative function. 

Proof:-  

We want to show that 𝜇(𝑚𝑛)  = 𝜇(𝑚)𝜇(𝑛). Whenever m and n are relatively 

prime. If either 𝑝²|𝑚 or 𝑝²|𝑛, p a prime, then 𝑝²|𝑚𝑛; Hence, 𝜇(𝑚𝑛) =  0 =

𝜇(𝑚)𝜇(𝑛), and the formula holds trivially. We therefore may assume that both m 

and n are square-free integers. Say, 𝑚 = 𝑝₁𝑝₂. . . 𝑝ᵣ , 𝑛 = 𝑞₁𝑞₂. . . 𝑞𝑠 , with all the 

primes 𝑝ᵢ and 𝑞𝑗  being distinct. Then  

𝜇(𝑚𝑛)  =  𝜇(𝑝₁. . . 𝑝ᵣ𝑞₁. . . 𝑞 )  =  (−1)  

=  (−1)ʳ (−1)ˢ =  𝜇(𝑚)𝜇(𝑛) 

which completes the proof.  

 

If 𝜇(𝑑) is evaluated for all the positive divisors d of an integer and the results are 

added. In the case where n= 1, 

∑  

𝑑|1

𝜇(𝑑) = 𝜇(1) = 1 

Suppose that n>1 and put 

𝐹(𝑛) =  ∑  

𝑑|𝑛

 𝜇(𝑑) 

we first calculate F(n) for the power of a prime, say, 

 𝑛 =  𝑝ᵏ.  

The positive divisors of pᵏ are just the k + 1 integers 1, p, p²...pᵏ, so that 
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𝐹(𝑝ᵏ) = ∑  

𝑑|𝑝𝑘

 𝜇(𝑑) =  𝜇(1) +  𝜇(𝑝)  +  𝜇(𝑝²) + ⋯ + 𝜇(𝑝ᵏ) 

= 𝜇(1) +  𝜇(𝑝) = 1 + (−1) = 0 

Because 𝜇 is a multiplicative function, an appeal to Theorem 3.4 is legitimate; this 

result guarantees that F also is multiplicative. Thus, if the canonical factorization 

of n is n =𝑝1
𝑘1𝑝2

𝑘2. . . 𝑝𝑟
𝑘𝑟,then F(n) is the product of the valuesassigned to F for the 

prime powers in this representation: 

𝐹(𝑛) = 𝐹(𝑝1
𝑘1)𝐹(𝑝2

𝑘2 )  …  𝐹(𝑝𝑟
𝑘𝑟)  =  0 

Theorem3.6:- 

For each positive integer n≥1,  

 

∑ 𝜇(𝑑) = {
1 𝑖𝑓 𝑛 = 1

0 𝑖𝑓 𝑛 > 1
𝑑|𝑛

 

Where 𝑑 runs through the positive divisors of n. 

For an illustration of this last theorem, consider n = 10. The positive divisors of 10 

are 1, 2, 5, 10 and the desired sum is 

∑ 𝜇(𝑑) = 𝜇(1) + 𝜇(2) + 𝜇(5) + 𝜇(10)

𝑑|10

 

 =  1 + (−1) + (−1)  + 1 = 0 

Theorem 3.7:Möbius inversion formula 

Let F and f be two number- theoretic functions related by the formula 

𝐹(𝑛) = ∑ 𝑓(𝑑)

𝑑|𝑛

 

Then 

𝑓(𝑛)  =  ∑  

𝑑|𝑛

𝜇(𝑑) 𝐹(
𝑛

𝑑
)  =  ∑  

𝑑|𝑛

𝜇( 
𝑛

𝑑
)𝐹(𝑑) 
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Proof:- The two sums mentioned in the conclusion of the theorem are seen to be 

the same upon replacing the dummy index d by 𝑑′ =  𝑛/𝑑; as d ranges over all 

positive divisors of n, s does 𝑑′.  

Carrying out the required computation, we get 

∑  

𝑑|𝑛

 𝜇(𝑑) 𝐹(𝑛/𝑑) = ∑ (𝜇(𝑑) ∑  

𝑐|(
𝑛

𝑑
)

 𝑓(𝑐))

𝑑|𝑛

 

= ∑ ( ∑  

𝑐|(
𝑛

𝑑
)

𝜇(𝑑) 𝑓(𝑐))

𝑑|𝑛

  

It is easily verified that 𝑑|𝑛 and  

𝑐 |(𝑛/𝑑) if and only if 𝑐|𝑛 and 𝑑|(𝑛/𝑐). Because of this, the last expression in Eq. 

(1) becomes 

∑ ( ∑  

𝑐|(
𝑛

𝑑
)

𝜇(𝑑) 𝑓(𝑐))

𝑑|𝑛

= ∑ ( ∑  

𝑑|(
𝑛

𝑐
)

𝜇(𝑑) 𝑓(𝑐))

𝑐|𝑛

= ∑ (𝑓(𝑐) ∑  

𝑑|(
𝑛

𝑐
)

𝜇(𝑑) )

𝑐|𝑛

  

In compliance with Theorem 3.6, the sum ∑  𝑑|(
𝑛

𝑐
) 𝜇(𝑑)  must vanish except when  

𝑛|𝑐 =  1 (that is, when n = c), in which case it is equal to 1; the upshot is that the 

right-hand side of Eq. (2) simplifies to 

∑ (𝑓(𝑐) ∑  

𝑑|(
𝑛

𝑐
)

𝜇(𝑑) )

𝑐|𝑛

= ∑ 𝑓(𝑐).

𝑐=𝑛

= 𝑓(𝑛) 

Hence the result. 

Theorem 3.8:- 

If F is a multiplicative function and 𝐹(𝑛) = ∑  𝑑|𝑛 𝑓(𝑑) then f is also 

multiplicative.  

Proof:- Let m and n be relatively prime positive  integers. Any divisor d of mn can 

be uniquely written as 𝑑 =  𝑑₁𝑑₂ , where 𝑑1|𝑚 , 𝑑₂|𝑛, and 𝑔𝑐𝑑(𝑑₁, 𝑑₂)  =  1. 



 
 

32 
 

Thus, using the inversion formula, 

𝑓(𝑚𝑛) = ∑ 𝜇(𝑑)𝐹 (
𝑚𝑛

𝑑
)

𝑑|𝑚𝑛

 

= ∑ 𝜇(𝑑1𝑑2)𝐹 (
𝑚𝑛

𝑑1𝑑2
)

𝑑1|𝑚
𝑑2|𝑛

 

= ∑ 𝜇(𝑑1)𝜇(𝑑2)𝐹 (
𝑚

𝑑1
) 𝐹 (

𝑛

𝑑2
)

𝑑1|𝑚
𝑑2|𝑛

 

= ∑ 𝜇(𝑑1)𝐹 (
𝑚

𝑑1
) ∑ 𝜇(𝑑2)𝐹 (

𝑛

𝑑2
)

 
𝑑2|𝑛𝑑1|𝑚

 

 

= 𝑓(𝑚)𝑓(𝑛) 
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CHAPTER 4 

SOME APPLICATIONS OF NUMBER 

THEORY 

 

4.1 APPLICATIONS  

Application to the calendar  

The Gregorian calendar, goes back as far as the second half of the 16th 

century. The earlier 1 Julian calendar, introduced by Julius Caesar, was based on a 

year of 365 days, with a leap year 4 every fourth year. This was not a precise 

enough measure, because the length of a solar year the time required for the earth 

to complete an orbit about the sun-is apparently 365.2422 days. The small error 

meant that the Julian calendar receded a day from its astronomical norm every 

128 years.  

By the 16th century, the accumulating inaccuracy caused the vernal equinox (the 

first day of Spring) to fall on March 11 instead of its proper day, March 21.The 

calendar's inaccuracy naturally persisted throughout the year, but at this season it 

meant that the Easter festival was celebrated at the wrong astronomical time. 

Pope Gregory XIlI rectified the discrepancy in a new calendar, imposed on the 

predominantly Catholic countries of Europe. He decreed that 10 days were to be 

omitted from the year 1582, by having October 15 of that year immediately follow 

October 4. At the same time, the Jesuit mathematician Christopher Clavius 

amended the scheme for leap years: these would be years divisible by 4, except 

for those marking centuries. Century years would be leap years only if they were 

divisible by 400. (For example, the century years 1600 and 2000 are leap years, but 

1700, 1800,1900, and 2100 are not.)  

Because the edict came from Rome, Protestant England and her possessions 

including the American colonies-resisted. They did not officially adopt the 

Gregorian calendar until 1752. By then it was necessary to drop 11 days in 

September from the Old Style, or Julian, calendar. So it happened that George 

Washington, who was born on February 11, 1732, celebrated his birthday as an 

adult on February 22 Other nations gradually adopted the reformed calendar: 

Russia in 1918, and China as late as 1949.  
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Our goal in the present section is to determine the day of the week for a 

given date after the year 1600 in the Gregorian calendar. Because the leap year 

day is added at the end of February, let us adopt the convenient fiction that each 

year ends at the end of February. According to this plan, in the Gregorian year Y 

March and April are counted as the first and second months. January and February 

of the Gregorian year Y+ l are, for convenience, counted as the eleventh and 

twelfth months of the year Y. 

Another convenience is to designate the days of the week, Sunday through 

Saturday, by the numbers 0,1,...6:  

Sun   Mon  Tue    Wed   Thu   Fri     Sat  

0  1  2         3        4       5        6  

The number of days in a common year is 365 ≡  1 (𝑚𝑜𝑑 7), whereas in leap years 

there are 366 ≡  2 (𝑚𝑜𝑑 7) days. Because February 28 is the 365th day of the 

year, and 365 ≡  1 (𝑚𝑜𝑑 7), February 28 always falls on the same weekday as 

the previous March 1. Thus if a particular March immediately follows February 

28,its weekday number will be one more, modulo 7, than the weekday number of 

the previous March 1. But if it follows a leap year day, February 29, its weekday 

number will be increased by two.  

For instance, it 𝐷₁₆₀₀ is the weekday number to March 1, 1600, then March 1 in 

the years 1601, 1602, and 1603 has numbers congruent modulo 7 to 𝐷₁₆₀₀ +

1, 𝐷₁₆₀₀ + 2 𝑎𝑛𝑑 𝐷₁₆₀₀ + 3 respectively; but the number corresponding to March 

1,1604 is 𝐷₁₆₀₀ + 5 (𝑚𝑜𝑑 7)  

We can summarize this: the weekday number DY for March 1 of any year Y> 1600 

will satisfy the congruence 

𝐷𝑌 ≡ 𝐷1600 + ( 𝑌 −  1600 ) + 𝐿 (𝑚𝑜𝑑7) … … … … … … . (1)  

where L is the number of leap year days between March 1,1600, and March 1 of 

the year Y.  

Let us first find L, the number of leap year days between 1600 and the year Y. To 

do this, we count the number of these years that are divisible by 4, deduct the 

number of century years, and then add back the number of century years divisible 

by 400. [x − a] = [x] − a whenever a is an integer. Hence the number of years n in 

the interval 1600 < n ≤ Y that are divisible by 4 is given by 

            ([𝑌 –  1600)/(100)] = [(𝑌/4) − 400] = [𝑌/4] − 400 
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Likewise , the number of elapsed century years is 

[(𝑌 –  1600)/4] =  [(𝑌/100) − 16] = [(𝑌/100)] − 16 

Whereas among those there are  

[(𝑌 –  1600)/400] = [𝑌/400] − 4 

Century years that is divisible by 400. Taken together, these statements yields. 

  𝐿 = ([𝑌/4] − 400) − ([𝑌/100] − 16) + ([𝑌/400] − 4) 

    = [𝑌/4] − [𝑌/100] + [𝑌/400] − 388 

Let us obtain, for a typical example, the number of leap years between 1600 and 

1995. we compute.  

𝐿 = [1995/4] − [1995/100] + [1995/400] − 388  

= 498 − 19 + 4 − 388 = 95  

Together with congruence (1), this allows us to find a value for 𝐷₁₆₀₀. Days and 

dates of recent years can still be recalled; we can easily look up the weekday 

(Wednesday) for March 1, 1995. That is, D₁₉₉₅=3. Then from (1).  

3 ≡  𝐷₁₆₀₀ +  (1995 1600) + 95 ≡  𝐷₁₆₀₀ (𝑚𝑜𝑑 7)  

and so March 1, 1600, also occurred on a Wednesday. The congruence giving the 

day of the week for March 1 in any year Y may now be reformulated as  

𝐷𝑦 ≡  3 + (𝑌 −  1600) +  𝐿 (𝑚𝑜𝑑 7) … … … … … (2) 

 An alternate formula for L comes from writing the year Y as  

𝑌 =  100𝑐 + 𝑦 , 0 ≤  𝑦 <  100 

where c denotes the number of centuries and y the year number within the 

century. Upon substitution, the previous expression for L becomes 

        𝐿 = [25𝑐 + (𝑦/4)] − [𝑐 + (𝑦/100)] + [(𝑐/4) + (𝑦/400)] − 388 

          = 24𝑐 + [𝑦/4] + [𝑐/4] − 388 

(Notice that y/100=0 and y/400 < y/4.) Then the congruence for 𝐷𝑦 appears as 

𝐷𝑦 ≡  3 + (100𝑐 +  𝑦 − 1600) + 24𝑐 + [𝑦/4] + [𝑐/4] − 388 (𝑚𝑜𝑑 7) 

Which reduces to 𝐷𝑦 ≡ 3 − 2𝑐 + 𝑦 + [
𝑐

4
] + [

𝑦

4
] (𝑚𝑜𝑑7).............(3) 
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Example:- 

 We can use the latest congruence to calculate the day of the week on which 

March 1, 1990, fell. For this year, c=19 and y=90 so that (3) gives  

𝐷₁₉₉₀ ≡ 3 − 38 + 90 + [19/4]   +  [190/4]  

≡ 55 + 4 + 22 ≡ 4 (𝑚𝑜𝑑 7)  

March 1 was on a Thursday in 1990. 

We move on to determining the day of the week on which the first of each month 

of the year would fall. Because 30 ≡ 2 (𝑚𝑜𝑑 7), a 30-day month advances by two 

the weekday on which the next month begins. A 31-day month increases it by 3. 

So, for example, the number of June 1 will always be 3 + 2 + 3 ≡ 1 (𝑚𝑜𝑑 7) 

greater than that of the preceding March 1 because March, April, and May are 

months of 31, 30, and 31 days, respectively. The table below gives the value that 

must be added to the day-number of March I to arrive at the number of the first 

day of each month in any year Y.  

 

 

 

 

For m=1, 2,..., 12, the expression  

[(2.6)𝑚 0.2]  −  2 (𝑚𝑜𝑑 7) 

produces the same monthly increases as indicated by the table. Thus the number 

of the first day of the 𝑚𝑡ℎ  month of the year Y is given by  

𝐷𝑦 + [(2.6)𝑚 −  0.2]  −  2 (𝑚𝑜𝑑 7) 

Taking December 1, 1990, as an example, we have  

𝐷₁₉₉₀ + [(2.6)10 −  02] − 2 ≡  4 +  25 − 2 ≡  6(𝑚𝑜𝑑 7)  

that is, the first of December in 1990 fell on a Saturday.  

Finally, the number w of day d, month m, 

year Y = 100c + y is determined 

MARCH           0 SEPTEMBER           2 

APRIL               3 OCTOBER               4 

MAY                5 NOVEMBER           0 

JUNE               1 DECEMBER            2 

JULY                3 JANUARY               5 

AUGUST         6 FEBRUARY             1 
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from congruence  

𝑤 ≡ (𝑑 − 1) + 𝐷𝑦 + [(2.6𝑚 0.2] − 2 (𝑚𝑜𝑑 7)  

We can use Eq. (3) to recast this: 

                 𝑤 ≡  𝑑 + [2.6𝑚 −  0.2] − 2𝑐 + 𝑦 + [𝑐/4] + [𝑦/4] + (𝑚𝑜𝑑 7) 

We summarize the results of this section in the following theorem. 

Theorem 4.1:- 

The date with month m, day d, year 𝑌 =  100𝑐 +  𝑦 where c≥ 16 and 0<y < 100, 

has weekday number 

𝑤 ≡ 𝑑 +  [2.6𝑚 − 0.2] − 2𝑐 + 𝑦 + [𝑐/4] + [𝑦/4](𝑚𝑜𝑑 7) 

provided that March is taken as the first month of the year and January and 

February are assumed to be the eleventh and twelfth months of the previous year. 

Let us give an example using the calendar formula. 

Example:-  

On what day of the week will January 14, 2020, occur?  

In our convention, January of 2020 is treated as the eleventh month of the year 

2019. The weekday number corresponding to its fourteenth day is computed as  

𝑤 ≡ 14 + [(2.6)11 −  0.2] − 40 +  19 +  [20/4] + [19/4]  

≡ 14 + 28 − 40 + 19 + 5 + 4 ≡  2 (𝑚𝑜𝑑 7)  

We conclude that January 14, 2020, will take place on a Tuesday 

 

Applications in Cryptography  

Cryptography is one of the main applications of number theory. Classically 

the making and breaking of secret codes has usually been confined to diplomatic 

and military practices. With the growing quality of digital data stored and 

communicated by electronic data processing systems, organizations in both the 

public and commercial sectors have felt the need to protect information from 

unwanted intrusion. Their test has been a recent surge of interest by 

Mathematicians and computer scientists in cryptography (from the Greek Cryptos, 

meaning hidden and graphein meaning to write). The science of making 

communications unintelligible to all except authorized parties. Cryptography is the 
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only known practical means for protecting information transmitted through public 

communication networks, such as those using telephone lines, microwaves or 

satellites.  

In the language of cryptography, where codes are called ciphers, the 

information to the concealed is called plain text. After transformation to secret 

form a message is called ciphers text. The process of converting from plaintext to 

cipher text is said to be encrypting (or enciphering), whereas the reverse process 

of changing from cipher text back to plaintext is called decrypting ( or deciphering). 

 

Applications of Chinese remainder theorem  

The first application deals with polynomial congruence with composite moduli. 

Theorem 4.2:- 

Let f be a polynomial with integer coefficients, let 𝑚1, 𝑚₂, … , 𝑚ᵣ.  

Then the congruence  

𝑓(𝑥)  ≡  0(𝑚𝑜𝑑𝑚) 

Has a solution if and only if each of the congruence.  

𝐹(𝑥)  ≡  0(𝑚𝑜𝑑𝑚ᵢ)  𝑖 =  1,2, … , 𝑟  

Has a solution. Moreover, If v(m) and v(mᵢ) denote the number of solution of (1) 

and (2) respectively, then  

𝑉(𝑚) = 𝑣(𝑚₁)𝑣(𝑚₂) … 𝑣(𝑚ᵣ)  

The next application of the Chinese reminder theorem concerns the set of lattice 

points visible from the origin. 

Theorem 4.3:- 

The set of lattice points in the plane visible from the origin contains arbitrarily large 

square gaps. That is, do you want any integer k>0 there exists a lattice point (a,b) 

such that none of the lattice points  

(a+r) ,b+s)  , 0 < r ≤ k , 0 < s ≤ k  

is visible from the origin.  
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CONCLUSION 

 

Number theory (or arithmetic or higher arithmetic in older usage) is a 

branch of pure mathematics devoted primarily to the study of the integers and 

integer-valued functions. German mathematician Carl Friedrich Gauss (1777–

1855) said, "Mathematics is the queen of the sciences—and number theory is the 

queen of mathematics.”  

Number theory has always fascinated amateurs as well as professional 

mathematicians. In contrast to other branches of mathematics, many of the 

problems and theorems of number theory can be understood by laypersons, 

although solutions to the problems and proofs of the theorems often require a 

sophisticated mathematical background.  

Until the mid-20th century, number theory was considered the purest 

branch of mathematics, with no direct applications to the real world. The advent 

of digital computers and digital communications revealed that number theory 

could provide unexpected answers to real-world problems. At the same time, 

improvements in computer technology enabled number theorists to make 

remarkable advances in factoring large numbers, determining primes, testing 

conjectures, and solving numerical problems once considered out of reach. In 

1974, Donald Knuth said "...virtually every theorem in elementary number theory 

arises in a natural, motivated way in connection with the problem of making 

computers do high-speed numerical calculations". Elementary number theory is 

taught in discrete mathematics courses for computer scientists; on the other hand, 

number theory also has applications to the continuous in numerical analysis. As 

well as the well-known applications to cryptography, there are also applications to 

many other areas of mathematics.  
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