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INTRODUCTION 

 
Graph theory is a delightful playground for the exploration of proof techniques in 

discrete mathematics and its results have applications in many areas computing, 

social and natural sciences. In this project we will examine about an important 

branch of graph theory called Matchings and Factors. Due to the mature 

techniques and wide range of application, matchings and factors became a useful 

tool in investigation of many theoretical problems and practical issues. 

 

Graphs are a powerful tool used in various subfields of science and engineering. 

When graphs are used for the representation of structured objects, the problem 

of measuring object similarity turns into the problem of computing the similarity 

of the graphs. Which is also known as graph matching. 

 

A graph matching is nothing but a subgraph of a graph with a set of edges that 

doesn't have a set of common vertices. A factor of graph 'G' is a spanning 

subgraph. ie, a subgraph that has the same vertex set as G. Matching has many 

applications in flow networks, scheduling and planning, stable marriage problems, 

neural networks in artificial intelligence and many more. 



                  CHAPTER 1 

       PRELIMINARY DEFINITIONS 
 

• Let  Ꝭ(G) denote the size of maximum matching in G .A Vertex v € V(G) is called critical if 

Ꝭ(G)>Ꝭ(G-v) 

• We define three special subsets of the vertex set of G  

D(G)={u:u is not critical} 

A(G)={u:u is critical and has non critical neighbour } 

C(G)={u:uis critical and all neighbours of u are critical } 

Set A(G) is called the Tutte set of G clearly,the set D(G) ,A(G) and C(G) partition the vertex set of 

G . 

 

• Let L={M1,..........Md} be a family of equisized  matching in G . we again define the three subsets 

of G using the family L . 

 

D(L)={u:there exist i € [d]such that u is free in Mi } 

A(L)={u:u∉ D(L) and u has a neighbor in D(L)} 

C(L)=V( G)\(D(L)UA(L)) 

 

• Let G =(V,E) be a graph M ⊆E is called as matching OF G if for all v €V we have │ {e€M:v is 

incident on e€E}│≤1 

• A matching M of G is said to be maximal if for all e€E\M the set of edges given by MU{e} is  not 

a matching of G . 

• The size of a matching M of G is the number of edges it contains and is denoted by │M│ 

• A Matching M of G is said to be maximum if for all matching M’ of G we have │M│≥│M’│.A 

maximum matching is always maximal but not vice –versa . 

• Let M be matching of G . a vertex v€V is said to be M-saturated if M contains an edge incident 

on v .otherwise v is said to be M –unsaturated. 

• A matching M of G is said to be perfect if all vertices of G are M –saturated . A graph  with an 

odd number of vertices can never admit a perfect matching . 

• A matching M of G is said to be A-perfect if each vertex in A is M –saturated.A perfect matching 

is a V-perfect matching. 

 

 

 

 



 

 

 

 

 

 

 

 

 



                    CHAPTER 2 
                   MATCHINGS AND COVERS 

 

DEFINITION : A Matching in a graph G is a set of non-loop edges with no shared 

endpoints. The vertices incident to the edges of a matching M are saturated by M 

; the others are unsaturated ( we say M - saturated and M - unsaturated ). A 

PerfectMatching in a graph is a matching that saturates every vertex. 

 

SECTION 2.1  

MAXIMUM MATCHINGS 

 

A matching is a set of edges, so its size is the number of edges. We can seek a 

large matching by iteratively selecting edges whose endpoints are not used by the 

edges already selected, until no more are available. This yields a maximal 

matching but maybe not a maximum matching. 

 

2.1.1. Definition. A maximal matching in a graph is a matching that cannot be 

enlarged by adding an edge. A maximum matching is a matching of maximum size 

among all matchings in the graph. 

A matching M is maximal if every edge not in M is incident to an edge already in 

M. Every maximum matching is a maximal matching, but the converse need not 

hold. 

 

2.1.2. Example. Maximal ≠  maximum. The smallest graph having a maximal 

matching that is not a maximum matching is P4. If we take the middle edge, then 



we can add no other, but the two end edges form a larger matching. Below we 

show this phenomenon in P4 and in P6 

 

 

 

 

 

  

 

In Example 2.1.2, replacing the bold edges by the solid edges yields a larger 

watching. This rives us way to look for larger matching 

 

2.1.3. Definition. Given a matching M, an M-alternating path is a path that 

alternates between edges in M and edges not in M . An M-alternating path whose 

endpoints are unsaturated by M is an M-augmenting path 

 

Given an M-augmenting path P, we can replace the edges of M in P with the other 

edges of P to obtain new matching M′ with one more edge. Thus when M is a 

maximum matching, there is no M-augmenting path 

     In fact, we prove next that maximum matchings are characterized by the 

absence of augmenting paths. We prove this by considering two matching and 

examining the set of edges belonging to exactly one of them. We define this 

operation for any two graphs with the same vertex set (the operation is defined in 

general for any two sets: see Appendix A).  

 

2.1.4. Definition. If G and H are graphs with vertex set V, then the symmetric 

difference G∆H is the graph with vertex set V whose edges are all those edges 

appearing in exactly one of G and H. We also use this notation for sets of edges, in 

particular, if M and M′ are matchings, then M∆M′ = (M-M′) ꓴ (M′-M) 

 



2.1.5. Example. In the graph below, M is the matching with five solid edges, M′ is 

the one with six bold edges, and the dashed edges belong to neither M nor M′. 

The two matchings have one common edge e, it is not in their symmetric 

difference. The edges of MΔM′ form a cycle of length 6 and a path of length 3. 

 
2.1.6. Lemma. Every component of the symmetric difference of two matchings is 

a path or an even cycle. 

Proof: Let M and M′ be matchings, and let F = MΔM′. Since M and M′ are 

matchings, every vertex has at most one incident edge from each of them. Thus F 

has at most two edges at each vertex. Since Δ(F)≤2 ,every component of F is a 

path or a cycle. Furthermore, every path or cycle in F alternates between edges of     

M-M′ and edges of M′-M. Thus each cycle has even length, with an equal number 

of edges from M and from M′ 

 

2.1.7. Theorem. (Berge [1957) A matching M in a graph G is a maximum matching 

in G if and only if G has no M-augmenting path. 

Proof: We prove the contrapositive of each direction: G has a matching larger 

than M if and only if G has an M-augmenting path. We have observed that an M-

augmenting path can be used to produce a matching larger than M. 

For the converse, let M′ be a matching in G larger than M. We construct an  M-

augmenting path. Let F=MΔM′ By Lemma 3.1.6 , F consists on path and even 

cycles the cycles have the same number of edges from M and M′. Since 

|M′|>|M|,F must have a component with more edges of M′ than of M . Such a 

component can only be a path that starts and ends with an edge of M′ , thus it is 

an M-augmenting path in G . 

 



 

 

 

SECTION 2.2 

HALL'S MATCHING CONDITION 

 

When we are filling jobs with applicants there may be many more applicants than 

jobs: successfully filling the jobs will not use all applicants. To model this problem, 

we consider an XY-graph , and we seek a matching that saturates X. 

 If a matching M saturates X. then for every S⊆X there must be at least |S| 

vertices that have neighbors in S because the vertices matched to S must be 

chosen from that set. We use NG(S) or simply N(s) to denote a set of vertices 

having a neighbour in S. Thus |N(S)|≥|S| is a necessary condition.                        

The condition "For all S⊆X, |N(S)|≥|S is Hall’s condition.Hall’s proved that the 

obvious necessary condition is also sufficient (TONCAS) 

2.2.1. Theorem. (Hall's Theorem-P Hall [1935]) An X,Y-bigraph G has a matching 

that saturates X if and only if |N(S)|≥|S|for all S⊆X. 

 Proof: Necessity. The |S| vertices matched to S must lie in N(S).               

Sufficient. To prove that Hall's Condition is sufficient, we prove the contrapositive. 

If M is a maximum matching in G and does M does not saturate X, then we obtain 

set S⊆X such that |N(S)|<|S|.Let  𝜇 ∈ X be a vertex unsaturated by M. Among all 

the vertices reachable from u by M-alternating paths in G, let S consist of those in 

X, and let T consists of those in Y.Note 𝜇 ∈S 

 

 



 

We claim that  M matches T with S-{ 𝜇}. The M-alternating paths from u reach Y 

along edges not in M and return to X along edges in M. Hence every vertex of      

S-{ 𝜇} is reached by an edge in M from a vertex in T. Since there is no M-

augmenting path, every vertex of T is saturated; thus an M-alternating path 

reaching y ∈ T extends via M to a vertex of S. Hence these edges of M yield a 

bijection from T to S-{ 𝜇}, and we have |T|=|S-{ 𝜇}|, 

The matching between T and S-{ 𝜇} yields T ⊆N(S). In fact , T=N(S). Suppose that 

y ∈  Y-T has a neighbour v ∈S. The edge vy cannot be in M,since u is unsaturated 

and the rest of S is matched to T by M. Thus adding uy to an M-alternating path 

reaching v yields an M-alternating path to y. This contradicts y ∉ T, and hence vy 

cannot exist. 

With T =N(S),we have proved that |N(S)|=|T|=|S|-1 < |S| for this choice of S. This 

complete the proof of contrapositive 

One can also prove sufficient by assuming Hall's Condition, supposing that no 

matching saturates X and obtaining a contradiction. As we have seen, lack of a 

matching saturating Xyields a violation of Hall's Condition. Contradicting the 

hypothesis usually means that the contrapositive of the desired implication has 

been proved Thus we have stated the proof in that language 

2.2.2. Remark. Theorem 3:1 1 implies that whenever an X Y bigraph has no 

matching saturating X. we can verify this by exhibiting a subset of X with too few 

neighbours. Note also that the statement and proof permit multiple edges. 

Many proofs of Hall's Theorem have been published: see Milky [1971, p38] and 

Jacobs (1969) for summaries. A proof by M. Hall (1948) leads to is lower bound on 

the number of matchings that saturates X, as function of the vertex degrees. We 

consider algorithmic aspects in Section 3.2 

When the sets of the bipartite have the same size. Hall's Theorem is the Marriage 

Theorem, proved originally by Frobenius (1917). The name arises from the setting 

of the compatibility relation between a set of n men and a set of n women. If 

every man is compatible with k women and every woman is compatible with k 

men, then a perfect matching must exist. Again multiple edges are allowed, which 

enlarges the scope of application. 



 

2.2.3. Corollary. For k > 0. every k-regular bipartite graph has n perfect matching 

Proof: Let G be a k-regular X, Y-bigraph. Counting the edges by endpoints in X and 

by endpoints in Y shows that k |X| = k |Y|, so |X|= |Y|. Hence it suffices to verify 

Hall's Condition, a matching that saturates X will also saturate Y and be a perfect 

matching 

Consider S ⊆ X, Let m be the number of edges from S to N(S). Since G is k- regular 

m=k|S|. These m edges are incident to N(S), so m ≤ k |N(S)|. Hence               

k|S|≤k |N(S)|,which yields |N(S)|≥|S| when k > 0. Having chosen S ⊆ X 

arbitrarily, we have established Hall's condition 

One can also non contradiction here. Assuming that G has no perfect matching 

yields a set S ⊆ X such that |N(S)|<|S|. The argument obtaining a contradiction 

amount to a rewarding of the direct proof given above . 

 

SECTION 2.3 

MIN-MAX THEOREMS 

 

When a graph G does not have a perfect matching. Theorem 3.1.6 allows us to 

prove that M is a maximum matching by proving that G has no M-augmenting 

path. Exploring all M-alternating paths to eliminate the possibility of 

augmentation could take a long time. 

We faced a similar situation when proving that a graph is not bipartite.Instead of 

checking all possible partitions, we can exhibit an odd cycle. Here again, instead of 

exploring all M-alternating paths, we would prefer to exhibit an explicit structure 

in G that forbids a matching larger than M. 

 

2.3.1. Definition. A vertex cover of a graph G is a set Q⊆  V(G) that contains at 

least one endpoint of every edge. The vertices in Q cover E(G). 



 

In a graph that represents a road network (with straight roads and no isolated 

vertices), we can interpret the problem of finding a minimum vertex cover as the 

problem of placing the minimum number of policemen to guard the entire road 

network. Thus "cover" means "watch" in this context. 

Since no vertex can cover two edges of a matching, the size of every vertex cover 

is at least the size of every matching. Therefore, obtaining a matching and a 

vertex cover of the same size PROVES that each is optimal. Such proofs exist for 

bipartite graphs, but not for all graphs. 

 

2.3.2. Example. Matching and vertex covers. In the graph on the left below we 

mark a vertex cover of size 2 and show a matching of size 2 in bold. The vertex 

cover of size 2 prohibits matchings with more than 2 edges, and the matching of 

size 2 prohibits vertex covers with fewer than 2 vertices. As illustrated on the 

right, the optimal values differ by 1 for an odd cycle. The difference can be 

arbitrarily large. 

 

 

2.1.16. Theorem. (König[1931], Egerváry[1931]) If G is a bipartite graph, then the 

maximum size of a matching in G equals the minimum size of a vertex cover of G. 

Proof: Let G be an X,Y-graph. Since distinct vertices must be used to cover the 

edges of a matching, |Q|≥|M| whenever Q is vertex cover and M is a matching in 

G. Given a smallest vertex cover Q of G, we construct a matching of size |Q| to 

prove that equality can always be achieved. 

Partition Q by letting R = Q ∩ X and T = Q∩  Y. Let H and H' be the subgraphs of G 

induced by R U (Y-T) and T U (X - R), respectively. We use Hall's Theorem to show 



that H has a matching that saturates R into Y - T and H has a matching that 

saturates T. Since H and H’ are disjoint, the two matchings together form a 

matching of size |Q| in G. 

Since RUT is a vertex cover, G has no edge from Y-T to X-R For each S ⊆ R, we 

consider NH(S), which is contained in Y-T . If |NH(S)|<|S|, then we can substitute 

NH(S) for S in Q to obtain a smaller vertex cover, since NH(S) covers all edges 

incident to S that are not covered by T. 

The minimality of Q thus yields Hall's Condition in H, and hence H has a matching 

that saturates R. Applying the same argument to H' yields the matching that 

saturates T. 

As graph theory continues to develop, new proofs of fundamental results like the 

König-Egerváry Theorem appear; see Rizzo [2000]. 

2.3.3. Remark. A min-max relation is a theorem stating equality between the 

answers to a minimization problem and a maximization problem over a class of 

instances. The König-Egerváry Theorem is such a relation for vertex covering and 

matching in bipartite graphs. 

For the discussion in this text, we think of a dual pair of optimization problems as 

a maximization problem M and a minimization problem N, defined on the same 

instances (such as graphs), such that for every candidate solution M to M and 

every candidate solution N toN, the value of M is less than or equal to the value of 

N. Often the "value" is cardinality, as above where M is maximum matching and N 

is minimum vertex cover. 

When M and N are dual problems, obtaining candidate solutions M and N that 

have the same value PROVES that M and N are optimal solutions for that instance. 

We will see many pairs of dual problems in this book. A min-max relation states 



that, on some class of instances, these short proofs of optimality exist. These 

theorems are desirable because they save work! Our next objective is another 

such theorem for independent sets in bipartite graphs. 

 

 

 

SECTION 2.4 

INDEPENDENT SETS AND COVERS 

 

We now turn from matchings to independent sets. The independence number of 

a graph is the maximum size of an independent set of vertices. 

2.4.1. Example. The independence number of a bipartite graph does not always 

equal the size of a partite set. In the graph below, both partite sets have size 3, 

but we have marked an independent set of size 4. 

 

 

No vertex covers two edges of a matching. Similarly, no edge contains two 

vertices of an independent set. This yields another dual covering problem. 

2.4.2.. Definition. An edge cover of G is a set L of edges such that every vertex of 

G is incident to some edge of L. 

We say that the vertices of G are covered by the edges of L. In Example3.4.1, the 

four edges incident to the marked vertices form an edge cover; the remaining two 

vertices are covered "for free". 



Only graph without isolated vertices have edge covers. A perfect matching forms 

an edge cover with n(G)/2 edges. In general, we can obtain an edge cover by 

adding edges to a maximum matching. 

2.4.3. Definition. For the optimal size of the sets in the independence and 

covering problems we have defined, we use the notation below. 

           maximum size of independent set             𝛼(G) 

maximum size of matching                          𝛼’(G) 

minimum size of vertex cover                     𝛽(G) 

minimum size of edge cover                       𝛽’(G) 

A graph may have many independent sets of maximum size (C5 has five of them), 

but the independent number𝛼(G) is a single integer (𝛼(C5) = 2). The notation 

treats the numbers that answer these optimization problems as graph 

parameters, like the order, size, maximum degree, diameter, etc. Our use of 𝛼'(G) 

to count the edges in a maximum matching suggests a relationship with the 

parameter 𝛼(G) that counts the vertices in a maximum independent set.We 

explore this relationship in Section 7.1. 

We use 𝛽(G) for minimum vertex cover due to its interaction with maximum 

matching. The "prime" goes on 𝛽'(G) rather than on 𝛽(G) because 𝛽(G) counts a 

set of vertices and 𝛽'(G) counts a set of edges. 

In this notation, the König-Egerváry Theorem states that 𝛼'(G) =  𝛽(G) for every 

bipartite graph G. We will prove that also 𝛼(G) = 𝛽’(G) for bipartite graphs 

without isolated vertices. Since no edge can cover two vertices of an independent 

set, the inequality 𝛽'(G) ≥ 𝛼(G) is immediate. (When S ⊆ V(G), we often use 𝑠 − to 

denote V(G)- S, the remaining vertices). 

2.4.4. Lemma. In a graph G, S ⊆ V(G) is an independent set if and only if 𝑠− is  a 

vertex cover, and hence 𝛼(G)+ 𝛽(G) = n(G) 

Proof: If S an independent set, then every edge is incident to at least one vertex of 

𝑠−. Conversely, if  𝑠− coversall the edges, then there are no edge joining vertices 

of S. Hence every maximum Independent set in the complement of a minimum 

vertex cover, and 𝛼(G)+ 𝛽IG) =n(G). 



The relationship between matchings and edge covering is more subtle 

Nevertheless, a similar formula holds 

 

2.4.5. Theorem. (Gallai[1959]) If G in a graph without isolated vertices, then 

𝛼'(G)+ 𝛽'(G)=n(G) 

Proof: From a maximum matching M. we will construct an edge cover of size n(G)-

|M|. Since a smallest edge cover is no bigger than this cover, this will imply that 

𝛽(G)≤n(G)- 𝛼'(G). Also, from a minimum edge cover L, we will construct a 

matching of size n(G)-|L|.  

Let M be a maximum matching in G. We construct an edge cover of G by adding 

to Mone edge incident to each unsaturated vertex We have used one edge for 

each vertex, except that each edge of M takes care of two vertices, so the total 

size of this edge cover is n(G)-|M|, as desired. 

Now let L be a minimum edge cover. If both endpoints of an edge e belong to 

edges in L other than e, then e ∉ L, sinceL- (e) is also an edge cover. Hence each 

component formed by edges of L has at most one vertex of degree exceeding 1 

and is a star (a tree with at most one non-leaf). Let K be the number of these 

components. Since L has one edge for each non-central vertex in each star, we 

have |L|= n(G)-k, We form a matching M of size k = n(G)-|L|by choosing one edge 

from each star in L 

 

2.4.6. Example. The graph below has 13 vertices. A matching of size 4 appears in 

bold, and adding the solid edges yields an edge cover of size 9. The dashed edges 

are not needed in the cover. The edge cover consists of four stars; from each we 

extract one edge (bold) to form the matching. 

 



2.4.7. Corollary, (König[1916]) If G is a bipartite graph with no isolated vertices, 

then  𝛼(G) = 𝛽'(G)  

Proof: By Lemma 3.4.4 and Theorem 3.4.5, 𝛼(G) + 𝛽(G) = 𝛼'G) + 𝛽‘(G).Subtracting 

the König-Egerváry relation 𝛼'(G)= 𝛽IG) completes the proof. 

 

 

5ECTION 2.5 

DOMINATING SETS 

 

The edges incident to The edges covered by any vertex in a vertex cover are the 

edges incident they form a star The vertex cover problem can be described as 

cover edge set with the fewest stars. Sometimes we instead want to cover the 

vertex with fewest stars. This is equivalent to our next graph parameter. 

2.5.1. Example. A company wants to establish transmission towers in a remote 

region. The towers are located at inhabited buildings, and each inhabit building 

must be reachable. If a transmitter at x can reach y, then also one at y can reach x 

.Given the pairs that can reach each other, how many transmitters are needed to 

cover all the buildings 

A similar problem comes from recreational mathematics: How many queens are 

needed to attack all squares on a chessboard?  

 

2.5.2. Definition. In a graph G, a set S⊆V(G) is a dominating set if every vertex not 

in S has a neighbour in S. The domination number (G) is the minimum size of a 

dominating set in G 

 



2.5.3. Example. The graph G below has a minimal dominating set of size 4 circles 

and a minimum dominating set of size 3 (squares): 𝛾(G) ) = 3. 

 

 

Berge (1962) introduced the notion of domination. Ore (1962) coined this 

terminology, and the notation (G) appeared in an early survey 

(CockayneHedetniemi [1977). An entire book (Haynes-Hedetniemi-Slater (1998)) 

is devoted to domination and its variations 

 

2.5.4. Example. Covering the vertex set with stars may not require as many stars 

as covering the edge set. When a graph G has no isolated vertices, every vertex 

cover is a dominating set, so (G) ≤ (G). The difference can be large,(K𝚗) = 1, but 𝛽 

(K𝚗)=n-1 

 

When studying domination as an extremal problem, we try to obtain bounds in 

terms of other graph parameters, such as the order and the minimum degree. A 

vertex of degree k dominates itself and k other vertices; thus every dominating 

set in a k-regular graph G has size at least n(G)/(k+1). For every graph with 

minimum degree k, a greedy algorithm produces a dominating set not too much 

bigger than this. 

2.5.5. Definition. The closed neighbourhood N[v]of a vertex v in a graph is N(v)⋃ 

[v].It is the set of vertices dominated by v. 

 

2.5.6. Theorem. (Arnautovic (1974), Payan (1975)) Every n-vertex graph with 

minimum degree k has a dominating set of size at most n (1+1n(k+1)/k+1 



Proof Alon (1990)) Let G be graph with minimum degree k. Given S⊆ V(G). Let 

Ube the set of vertices not dominated by S . We claim that some vertex v outside 

S dominates at least |U|(k+1)/n vertices of U. Each vertex in U has at least k 

neighbor,so ∑|N[v] ≥ |U|(k+1). Each vertex of G is counted atmost n times by 

these|U|sets,so some vertex y appears atleast |U|(k+1)/n times and satisfies the 

claim. 

We iteratively select a vertex that dominates the most of the remaining 

undominated vertices. We have proved that when r undominated vertices 

remain, after the next selection at most r(1-(k+1)/n) undominated vertices remain 

hence after a n (n(k+1)/k+1 steps the number of undominated vertices is at most 

n(1-k+1/n)ln(k+1)/k+1< ne ln(k+1) = n/k+1 

The selected vertices and these remaining undominated vertices together a 

dominating set of size at most n(1+ln(k+1)/k+1 

 

2.5.7. Remark. This bound is also proved by probabilistic methods in Theorem 

8.5.10 Caro-Yuster-West (2000) showed that for large the total domination 

number satisfies a bound asymptotic to this. Alan 1990] uod probabilistic 

methods to show that this bound is asymptotically sharp when is large Exact 

bounds remain of interest for small k Among connected n -vertex graphs 𝜹(G) ≥2 

implies yG) ≤ 2 n/5 (McCuaig-Shepherd (1989), with seven small exceptions, 

and𝜹(G) ≥ 3 implies y(G) ≤  3n/8 Reed (1996), Exercise 53 requests constructions 

achieving these bounds 

Many variations on the concept of domination are studied In Example3.1.25, for 

example, one might want the transmitters to be able to communicate with each 

other, which requires that they induce a connected subgraph 

 

2.5.8. Definition. A dominating set 5 in G is a connected dominating set if GIS) is 

connected an independent dominating set if GIS is independent, and a total 

dominating set if GIS has no isolated vertex 

Each variation add a constraint, so dominating sets of these types are at least as 

y(G).Exercises 54-60 explore these variations Studying independent dominating 



sets amounts to studying maximal independent set This leads to a nice result 

about claw-free graphs. 

 

2.5.9. Lemma. A set of vertices in a graph is an independent dominating set if and 

only if it is a maximal independent set. 

Proof: Among independent setS is maximal if and only if every  has a neighbor in 

S, which is the condition for S to be a dominating set 

2.5.10. Theorem. (Bollobås-Cockayne [1979]) Every claw-free graph he 

independent dominating set of size y(G). 

Proof: Let S be a minimum dominating set in a claw-free graph G. Let S’ be a 

maximal independent subset of S.Let T = V(G)- N(S'). Let T' be a maximal 

independent subset of S. 

Since T' contains no neighbor of S', S'UT' is independent. Since S  meximal to S we 

have S  ⊆N(S'). Since T' is maximal in T, T' dominates Hence S’UT’ is a dominating 

set. 

It remains to show that |SUT'|≤ y(G). Since S' is meximal in S,T independent, and 

G is claw-free, each vertex of S-S' has at most one neighbor in T’. Since S is 

dominating, each vertex of T has at least one neighbor in S-S. Hence |T’|≤|S -S'| , 

which yields |S’UT’| = |S|= y(G). 

 

 

 



                CHAPTER 3 
3.1 MATCHINGS IN GENERAL GRAPHS 

When discussing perfect matchings in graphs,it is natural to consider more 

general subgraphs. 

Definition.A Factor of a graph G is a spanning subgraph of G .A k-factor is a 

spanning  k-regular subgraph .An odd component of a graph is a component of  

odd order ; the number of odd components of H is o(H). 

Remark. A 1-factor and a perfect matching are almost the same thing.The precise 

distinction is that “1-factor” is a spanning 1-regular subgraph of G ,while “perfect 

matching” is the set of edges in such a subgraph. 

A 3-regular graph that has a perfect matching decomposes into a 1-factor and a 2-

factor . 

3.2 TUTTE’S 1-FACTOR THEOREM 

Tutte found a necessary and sufficient condition for which graphs have 1-factors 

.If G has a 1-factor and we consider a set S⊆V(G),then every odd component of G-

S has a vertex matched to something outside it,which can only belong to S . since 

these vertices of S must be distinct ,o(G-S)≤│S│. 

 

 

 

 

                                 even                                               even             

                                  

     S 



The condition “for all S⊆V(G),o(G-S) ≤│S│” is Tutte’s Condition. Tutte proved that 

his obvious necessary condition is also sufficient(TONCAS). 

3.2.1 THEOREM (Tutte 1947) A graph G has a 1-factor if and only if o(G-S)≤│S│for 

every S⊆V(G) 

PROOF Necessity the odd component G-S must have vertices matched to distinct 

vertices of S . 

Sufficiency when we add an edge joining two components of G-S ,the number of 

odd components does not increase (odd and even together become one odd 

omponent ,two components of the same party become one even component).H 

ence Tutte’s condition is preserved by addition of edges : if G’=G+e and 

S⊆V(G),then o(G’-S) ≤O(G-S) ≤│S│.Also if G’=G+e has no 1-factor ,then G has no 1-

factor . Therefore, the theorem holds unless there exists a simple graph G such 

that G satisfies Tutte's Condition, G has no 1-factor,and adding any missing 

edge to G yields a graph with a 1-factor. Let G be such a graph. We obtain a 

contradiction by showing that G actually does contain a 1-factor. 

Let U be the set of vertices in G that have degree n(G) - 1. 

 

Case 1: G-U consists of disjoint complete graphs. In this case, the vertices 

each component of G - U can be paired in any way, with one extra in the 

0dd components. Since o(G - U) ≤│U| and each vertex of U is adjacent to all of G-

U, We can match the leftover vertices to vertices of U. 

The remaining vertices are in U, which is a clique. To complete the 1-factor, we 

need only show that an even number of vertices remain in U. we have matched 

an even number , so it suffices to show that n(G) is even this follows by invoking 

tutte’s condition for S=ɸ,since a graph of odd order would have a component of 

odd order. 

     



 

Case 2: G- U is not a disjoint union of cliques. In this case, G- U has 
two vertices at distance 2; these are nonadjacent vertices x, z with a common 
neighbor y ∉ U . Furthermore, G- U has another vertex w 
not adjacent to y, since y∉ U. By the choice of G, adding an edge to G creates 
a 1-factor; let 𝑀1and 𝑀2be 1-factors in G +xz and G+ yw, respectively. It 
suffices to show that  𝑀1 ∆  𝑀2 contans a 1-factor avoiding xz and yw, because 
this will be a 1-factor in G. 
 

Let F=𝑀1 ∆  𝑀2. Since xz € 𝑀1 -  𝑀2  and yw € 𝑀2- 𝑀1both xz and yw 
are in F . Since every vertex of G has degree 1 in each of 𝑀1and 𝑀2 , every 
vertex of G has degree 0 or 2 in F. Hence the components of F are even cycles 
and isolated vertices Let C be the cycle of F containing xz .  
 
If C contains both yw  and xz, as shown below, then to avaid them we use 
yx  or yz n the portion of C starting from y along yw, we use edges of 𝑀1 to 
avoid using yw .When we reach(x,z) , we use zy if we arrive at z (as shown) 
otherwise, we use xy.  In the remainder of C we use the edges of 𝑀2. We have 
produced a 1-factor of C that does not use xz  or yw Combined with 𝑀1 or 𝑀2   
outside C we have a 1-factor of G. 
 
 



 

  
 

 

 

3.2.2 Remark. Like other characterization theorems, Theorem 3.2.1 yields short 

verifcaions both when theproperty holds and when it doesn't exist ,. We prove 

that G has a l-factor exists by exhibiting one. When it doesn't exist, Theorem 3.2.1 

guarantees that we Canexhibit a set whose deletion leaves too many odd 

compornents. 

 

3.2.3  Remark. For a graph G and any S ⊆ V(G), counting tha vertices modulo 

2 shows that |S│ +o(G-S) has the same parity as n(G). Thus also the difference 

of (G-S) -│S│ has the same parity as n(G). We conclude that l1 n(G) is even 

and G has no 1-factor, then o(G-S) exceeds |S│ by at least 2 for some S. 

 

For non-bipartite graphs (such as odd cycles), there may be a gap between 

α’(G) and β(G) . Nevertheless, another minimization problem yields a min-max 

relation for .α'(T) in general graphs.This min-max relation generalizes Remark 

3.2.3  The proof uses a graph transtormation that involves a general graph 

operation. 

 3.2.4. Definition. The join of simple graphs G and H, written G v H, is the 

graph obtained from the disjoint union G+ H by adding the edges [xy :x € 

V(G), y€ V(H). 



 

𝑃4 v  𝑘3 

 

3.2.5. Corollary. (Berge-Tutte Formula-Berge [1958) The largest number 

of vertices saturated by a matching in G is minS⊆V(G){n(G)-d(S),where 

d(S) = o(G- S)-│S│ 

 

Proof: Given S⊆  V(G), at most │S| edges can match vertices of S to vertices 

in odd components of G-S, so every matching has at least o(G-S)-│S│unsaturated 

vertices. We want to achieve this bound. 

Let d= max{o(G- S)-│S│: S   V(G)}. The case S =ɸ yields d ≥ 0. LetG’ =GvK. Since d(S) 

has the same parity as n(G) for each S, we know that n(G’) is even. If G’ satisfies 

Tutte's Condition, then we obtain a matching ot the desired Size in G from a 

perfect matching in G’, because deleting the d added vertices eliminates edges 

that saturate at most d vertices of G.  

The condition o(G’-S') ≤ │S│ holds for S’= ɸ because n(G’) is even. 

If S’ is nonempty but does not contain all of Ka, then G’- S’ has only one 

component, and 1≤ |S’|. Finally, when K CS', we let S = S’- V(𝐾𝑑). We 

have G’-S’ = G--S, so o(G’-S’) = o(G-S)≤ │S│ +d = │S’│We have verified 

that G’ satisfies Tutte's Condition. 

 

 

Corollary 3.2.5. guarantees that there is a short PROOF that a maximum 
matching indeed nas maximum size by exhibiting a vertex set S whose deletion 
leaves the appropriate nunmber of odd components. 



 
Most applications of Tutte's Theorem involve showing that some other condition 
implies Tutte’ s Condition and hence guarantees a 1-factor Some were proved by 
other means long before Tutte's Theorem was available. 
 
3.2.6  Corollary. (Petersen [1891) Every 3-regular graph with no cut-edge has a 1-
factor. 
 
Proof: Let G be a 3-regular graph with no cut-edge. We prove that G satisties 
Tutte's Condition. Given SCV(G), we count the edges between S and the odd 
components of  G-S . Since G is 3-regular, each vertex of S is incident to at 
most three such edges. If each odd component H of G-S is incident to at least 
three such edges, then 3o(G- S) ≤ 3 |S| and hence o(G-S) ≤ │S│, as desired. 
 
Let m be the number of edges from S to H. The sum of the vertex degrees 
in H is 3n(H)- m. Since H is a graph, the sum of its vertex degrees must be 
even. Since n(H) is odd, we conclude that m must also be odd. Since G has 
no cut-edge, m cannot equal 1. We conclude that there are at least three edges 
from S to H, as desired. 
 
Proof by contradiction would also be natural here. Assuming o(G-S)>│S│ 
also leads to o(G -S)≤ IS|, so we rewrite the proof directly. Corollary 3.2.6 
is best possible; the Petersen graph satisfies the hypothesis but does not have 
two edge-disjoint 1-factors (Petersen |1898|). 
 

Petersen also proved a sufficient condition for 2-factors. A connected graph 
with even vertex degrees is Eulerian  and decomposes into edge-disjoint cycles . 
For regular graphs of even degree, the cycles in 8ome decomposition can be 
grouped to form 2-factors. 
 
3.2.7 Theorem. (Petersen (1891)) Every regular graph of even degree has a 2-
factor. 
 
Proof: Let G be a 2k-regular graph with vertices 𝑣1,……..,𝑣𝑛Every component 
of G is Eulerian, with some Eulerian eircuit C. For each component, define a 
bipartite graph H with vertices 𝑢1,……un and w1,…..wn.by putting  ui↔wj 

if v1, immediately follows u1, somewhere on C. Because C enters and exits each 



vertex k times, H is k-regular. (Actuaiiy, H is the split of the digraph obtainedby 
orienting G in accordance with C. 
 
Being a regular bipartite graph, H has a 1-fáctor M . The edge incident to w1 in H 
corresponds to an edge entering v1in C. The edge incident to ui, in H corresponds 
to an edge exiting vj. Thus the 1-factor in H transforms into a 2-regular spanning 

subgraph of this component of G. Doing this for each component of G yields a 2-
factor of G. 
 
3.2.8. Example. Construction of a 2-factor Consider the Eulerian circuit in 
G = k5 that successively visits 1231425435. The corresponding bipartite graph 
H is on the right. For the 1-factor whose u, w-pairs are 12, 43, 25, 31, 54, the 
resulting 2-factor is the cycle (1,2, 5, 4, 3). The remaining edges form another 
1-factor, which corresponds to the 2-tactor (, 4, 2,3, 5) that remains in G. 
 
 
 
 
 
 
                                                           U                   W 

  
 

f-FACTORS OF GRAPHS 

 
A factor is a spanning subgraph of G; we ask about existence of factors of 
special types A k-factor is a k-regular factor we have studied 1-factors and 



2-factors. We can try to specity the degree at each vertex. 
 
3.2.9. Definition. Given a function f: V(G)  →   NU{0}, an f-factor of a graph 
G is a subgraph H such that da(v)= f(v) for all v €V(G) 
 
Tutte 1962) proved a necessary and sufficient condition for a graph G 
to have an f-factor . He later reduced the problom to checking for 
a 1-tactor in a related simple graph. We describe this reduction; it is a beautiful  
exampie Ot ranstorming a graph problem into a previously solved problem. 
 
3.2.10  Example. A graph transformation (Tutte [1954a)). We assume that 
f(w)≤d(w) for all w; otherwise G has too few edges at w to have an f-factor 
We then construct a graph H that has a 1-factor if and only if G has an f-factor 
Let e(w)= d(w)-f(w); this is the exces degree at w and is nonnegative. 
 
To construct H, replace each vertex with a biclique kd(v),e(v) having partite sets 

A(v) of size d(v) and B(v) of size e(v). For each vw € E(G), add an edge JOining One 
vertex of A(v) to one vertex of A (w). Each vertex of A(v) participatesin one such 
edge. 
 
The figure below shows a graph G, vertex labels given by f, and the resulting 
simple graph H. The bold edges in H form a 1-factor that correspondsto an f-
tfactor of G. In this example, the f-factor is not unique. 
 
 

 
 
 



3.2.11. Theorem. A graph G has an f-factor if and only if the graph H constructed 
from G and f  has a 1-factor. 
 
Proof: Necessity. If G has an f-factor, then the corresponding edges in H leave 
e(v) vertices of A(v) unmatched; match them arbitrarily to the vertices of B(v) 
to obtain 1-factor of H. 
 
Sufficiency. From a 1-factor of H, deleting B(v) and the vertices of A(v) matched 
into B(v) leaves f(v) edges at v. Doing this for each v and merging the remaining 
f(v) vertices of each A(v) yields a subgraph of G with degree f(v)at v. It is an f-
factor of G. 
 
Tutte's Condition for a 1-factor  transforms into a necessary and sufficient 
condition for an f-factor in G. Among the applications is a proof of the Erdős-Gallai 
[1960] characterization of degree sequences of simple graphs  
 
Given an algorithm to find a 1-factor, the correspondence in  provides an 
algorithmic test for an f-factor. Instead of just seeking a 1-factor 
(that is, a perfect matching), we next consider the more general problem of 
finding a maximum matching in a graph. 
 
 

 
 

 

 

 

 

 



APPLICATIONS 
 

. Street Sweeping and the Transportation Problem. A 

cleaning machine sweeping a curb must move in the same direction as traffic. 

This yields a digraph; a two-way street generates two oppositely directed edges, 

while a one-way street generates two edges in the same direction. We consider 

a simple version of the Street Sweeping Problem, discussed in more detail 

in Roberts (1978) as based on Tucker-Bodin [1976). 

 

In New York City, parking is prohibited from some curbs each day to allow 

for street sweeping. For each day, this defines a sweep subgraph G of the full 

digraph H of curbs, consisting of those available for sweeping. Each e € E(H) 

has a deadheading time t(e) needed to travel it without sweeping. 

 

The question is how to sweep G while minimizing the total deadheading 

time spent without sweeping. This is a generalization of a directed version of 

the Chinese Postman Problem. If indegree equals outdegree at each vertex of 

G, then no deadheading is needed. Otherwise, we duplicate edges of G or add 

edges from H to obtain an Eulerian digraph G’ containing G. 
 

Let X be the set of vertices with excess indegree; let σ(x) = dG
−(x) -dG

−(x) 

fer x є X. Let Y be the set with excess outdegree; let მ(y)= dG
−  (y) -dG

+(y) for 

yє Y. Note that ΣxєXσ(x)=ΣyєYმ(y). To obtain G' from G, we must add 

σ(x) edges with tails at x € X and მ(y) edges with heads at y € Y. Since G 

needs net outdegree 0 at each vertex, the additions form paths from X to Y. The 

cost c(xy) of an x,y-path is the distance from x to y in the weighted digraph  H 

which can be found by Dijkstra's Algorithm. 

 

This yields the Transportation Problem. Given supply σ(x) for xє X, 



detnand მ(y) for y є Y, cost c(xy) per unit sent from x to y, andΣσ (x) = 

Σმ(y), we want to satisfy the demands at least total cost. A version of the 

problem was introduced by Kantorovich [1939]; the form above arose (with a 

constructive solution) in Hitcheock (1941] (see also Koopmans [1947]). The 

problem is discussed at length in Ford-Fulkerson [1962, p93-130]. 

 

When the supplies and demands are rational, the Assignment Problem 

can be applied. First scale up to obtain integer supplies and demands. Next 

define a matrix with Σ σ(x) rows and columns. For each x є X, create σ(x) 

rows. For each y є Y, create მ(y) columns. When row i and column j represent 

x and y . let 𝑤𝑖,𝑗  = M –c(xy) where M = maxx,y.c(xy). A maximum weight 

matching now yields a minimum cost solution to the Transportation Problem 

 

Graph matching has applications in flow networks, scheduling and planning, 

modeling bonds in chemistry, graph coloring, the stable marriage problem, neural 

networks in artificial intelligence and more. 

 



Conclusion 
 

Project was done on Matchings and Factors. In this project, we have 

seen how matchings and factors is related to filling jobs with applicants 

, how a perfect matching is done in many fields , how it is applicable in 

street sweeping and the transportation problem. 

 

We conclude from the project that Matchings and Factors is an 

important and useful concept in graph theory. A Matching in a graph is 

a set of non-loop edges with no shared endpoints. A Factor of a graph G 

is a spanning subgraph of G. 
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