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INTRODUCTION

In topology, knot theory is the study of mathematical knots
while inspired knots which appear in daily life. Such as those in
shoelaces and rope, a mathematical knot differs in the ends are joined
together so that it cannot be done. Take a piece of string, tie a knot in
it. Now glue the ends of the string together to form a knotted loop. The
result is a string that has no loose ends and that is truly knotted. Unless

we use scissors there is no way that we can untangle the string.

To make a study of knottedness, the knotted part of the string
must be trapped. One way to do this is to imagine an infinitely long
string which is a straight line outside the region containing the knot. A
simple way to join the ends to form a loop in mathematical language, a
knot is an embedding of a circle in three dimensional space.
Mathematical knots are modelled on the physical variety and we allow
to knot to be deformed as if it were made of a thin, flexible, elastic

thread.
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CHAPTER 1

ELEMENTARY CONCEPTS

WHAT ARE KNOTS?

A knot is just such a knotted loop of string except that we think of the
string as having no thickness, its cross section being a single point. The
knot is then a closed curve in space that does not interact itself

anywhere. Deformation of curve will be considered to be the same knot.

O &
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The simplest knot of all is just the unknotted circle, which we call the
Unknot or the Trivial knot. The next simplest knot is called a Trefoil knot.
all of the knots are known to be distinct .If we made any one of them out
of string, we would not be able to deform it to look like any of the others
.there are many different pictures of the same knots. We call such a

picture of knot a projection of the knot.

O @ @

The places where the knot crosses itself in the picture are called the
crossings of the projections, figure-eight knot is a four-crossing knot. If a
knot is to be non -trivial, then it had better have more than one crossing

in a projection.
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Because each of these is clearly a trivial Knot as we can then untwist the
single crossing interestingly enough, there are no two crossing non

trivial Knot.
Knot theory is a subfield of an area of mathematics known as topology.

Certain types of knots are particularly interesting. One such type is an
alternating knot, which is a knot with a projection that has crossing that
alternate between over and under as one travels around the knot in a

fixed direction.

E.g. - Trefoil Knot

COMPOSITION OF KNOTS

Given two projections of knots, we can define a new knot obtained by
removing a small arc from each knot projection and then connecting the
four end points by two new arcs. We call the resulting knot the
composition of the two knots. If we denote the two knots by the symbols

J and K, then their composition is denoted by J#K.

We choose the two arcs that we remove to be on the outside of each
projection and to avoid any crossings. We choose the 2 new arcs so they

do not cross either the original knot projections or each other.

We call a knot a composite knot if it can be expressed as the
composition of 2 knots, neither of which is trivial knot. This is in analogy

to the positive integers, neither of which is equal to1.The knots that
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make up the composite knot are called factor knots. If a knot is not the

composition of any two nontrivial knots, we call it a prime knot.

E.g. -trefoil knot, figure-eight knot.

One way that composition of knots does differ from multiplication of
integers is that there is more than one way to take the composition of
two knots .it is often possible to composition of two knots .it is often
possible to construct two different composite knots from the same pair
of knots J and K . We first need to put an orientation on our knots. An
orientation is defined by choosing a direction to travel around the knot.
Thus direction is denoted by placing coherently directed arrows along
the projection of the knot in the direction of our choice. We then say that

the knot is oriented.

oD o@ P
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When we then form the composition of two oriented knots J and K, there
are two possibilities. Either the orientation on J matches the orientation
on K in J#K, resulting in an orientation for J#K, or the orientation J and K
do not match up in J#K .All of the compositions of the two knots where
the orientations do match up will yield the same composite knot, and

vice versa.

A knot is invertible if it can be deformed back to itself so that an

——
©
| —




orientation on it is send to the opposite orientation.

REIDEMEISTER MOVES

Suppose that we have two projections of the same knot. If we made a
knot out of string that modelled the first of the two projection that we
should be able to rearrange the string to resemble the second projection.
Knot theorists call the rearranging of the string, that is, the movement of
the string through tree-dimensional space without letting it pass through

itself, an ambient isotopy.

A deformation of a knot projection is called a planar isotopy if it deforms
the projection plane as if it were made of rubber with the projection

drawn here.

A reidemeister move is one of the three ways to change a projection of
the knot that will change a projection of the knot that will change a
projection of the knot that will change the relation between the crossing
.The first reidemeister move allows us to put in or take out a twist in the

knot, as in the given figure.

diklds

The second reidemeister move allows us to either add two crossings or
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remove two crossings. The third reidemeister move allows us to slide a
strand of the knot from one side of a crossing to the other side of the

crossing

The figure-eight knot is known to be equivalent to its mirror image, that
is, the knot obtained by changing every crossing. Incidentally, a knot that
is equivalent to its mirror image is called amphicheiral by

mathematicians and achiral by chemists.
LINKS

A link is a set of knotted loops all tangled up together. Two links are
considered to be the same if we can deform the one link to the other link
without ever having any one of the loops intersect itself or any of the
other loops in the process. Here are 2 projections of one of simplest

links, known as the whitehead link.

& €

Since it is made up of two loops knotted with each other, we say that it is
a link of two components. Here is another well-known link with three
components, called the Borromean rings. This links is named after the
Borromeas, an Italian family from the renaissance that used this pattern

of interlocking rings on their family crest.
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We call the first of these unlink (or trivial link) of two components and
the second the Hopf link. One difference between these two links is that
the unlink is splittable since its two components don't link each other
and can be separated by a plane. But in the hopf link, the two
components do link each other once. We would link a method for

measuring numerically how linked up two components are. We will

define what's known as linking number

We say that the linking number is an invariant of the oriented link that is
once the orientations are chosen on the two components of the link, the
linking number is unchanged by ambient isotopy. It remains invariant
when the projection of the link is altered. This is one of many invariants
we will look. Another invariant of links is simply the number of

components in the link. It is unchanged by ambient isotopes of the link.

A link is called Brunnian if the link itself as non-trivial, but the removal of
any of the components leaves us with a set of trivial unlinked circles.
These links are named after Hermann Brunn, who drew pictures of such
links in 1892.

TRICOLORABILITY

We have discussed a lot about telling knots and links apart, but actually
we have not yet shown the most basic fact of knot theory. We have not

yet proved that there is any other knot besides the unknot. So we will

11
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prove that there is at least one other knot besides the unknot. We will
prove that the trefoil knot is not equivalent to the unknot. In order to do

that, we need to introduce the idea of tricolorability.

We will say that a strand in a projection of a link is a piece of the link that
goes from one undercrossing to another with only overcrossing in
between. We will say that a projection of a knot or link is tricolorable if
each of the strands in projection can be colored one of three different
colors, so that at each crossing either three different colors come
together or all the same color comes together. In order that a projection
be tricolourable, we further require that at least two of the colors are

used.

Since Reidemeister moves leave the colorability unaffected, whether or
not a projection is tricolorable depends only on the knot given by the
projection. Either every projection of a knot is tricolorable or no
projection of that knot is tricolorable. For instance, every projection of
the trefoil knot is tricolorable. Since the usual projection of the unknot is
not tricolorable, it must be the case that the trefoil knot and the unknot

are distinct.

12
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CHAPTER 2
TABULATING KNOTS

o THE DOWKER NOTATION FOR KNOTS

The Dowker notation is an extremely simple way to describe a projection
of a knot. First, start with an alternating knot. Suppose we have a
projection of alternating knot that we want to describe. Choose an
orientation on the knot, given by placing coherently directed arrows
along the knot. Pick any crossing and label it 1. Leaving that crossing
along the under strand in the direction of the orientation, label the next
crossing that you come to with a2. Continue through that crossing on
the same strand of the knot, and label the next crossing with a3.
Continue to label the crossing with the integers in sequence until you
have gone all the way around the knot once when you are done, each
crossing will have two labels on it as the knot passes through each
crossing twice. Each crossing has one even number and one odd

number labelling it.

« CONWAY'S NOTATION

We introduce a notation for knots due to John H Conway. This was the
notation he used in order to tabulate the prime knots through 11
crossing and prime links through 10 crossing in 1969. The Conway
notation has been utilized in order to prove numbers results and recently
has been applied to knotting in DNA. It is particularly suited to

calculations involving what are called tangles.

A tangle in a knot or link projection is a region in the projection plane
surrounded by a circle such that the knot or link crosses the circle

exactly four times. We will say two tangles are equivalent if we can get

13
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from one to the other by a Reidemeister move sequence while the four
endpoints of the strings in the tangle remain fixed and while the strings
of the tangle never journey outside the circle defining the tangle. If the
rational tangle is represented by an even number of integers, we can
think of constructing it by simple starting with two vertical strings and
then twisting the two bottom end points around each other some
number of times , while holding the top two endpoints fixed .similarly if
the rational tangle is represented by an odd number of integers , we can
construct it by starting with two horizontal strings and alternately
twisting the two right-hand endpoints appropriately, followed by twisting

the two bottom endpoints appropriately.

Amazingly enough, there is an extremely simple way to tell if two rational
tangles are equivalent. Suppose that two tangles are given by the
sequences of integers -2 3 2 and 3 -2 3. We compute the so called
continued fractions corresponding to these integers .If we close off the
ends of a rational tangle, we call the resulting link a rational link. So for
instance, the figure -eight knot is a rational knot, with rational tangle 22.
We can use our notation for rational tangles to denote the corresponding
rational knot. We call this notation Conway's notation.

3 (\
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« KNOTS AND PLANAR GRAPHS

We introduce a notation for knot projections that has been useful in the

past for knot tabulation. It provides a bridge between knot theory and

14
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graph theory, with the potential for commerce in both directions. Here
we are interested in planar graphs, that is, graphs that lie in the plane.
From a projection of a knot or link, we create a corresponding planar
graph in the following way. First shade every other region of the link

projection so that the infinite outermost region is not shaded.

Put a vertex at the centre of each shaded region and then connect with
an edge any two vertices that are in regions that share a crossing. This
is the graph corresponding to our projection. It doesn't depend in any
way on whether a crossing is an over crossing or an undercrossing. So
we define crossings to be positive or negative. Now we label each edge
in the planar graph with a + or a — depending on whether the edge
passes through + or — crossing. We call the result a signed planar graph.

We now have a way to turn any link projection into a signed planar graph.

Certainly, we can turn any signed planar graph into a knot projection.
Starting with the signed planar graph put an x across each edge.
Connect the edges inside each region of the graph. Shade those areas
that contain a vertex. Then, at each x’'s put in a crossing corresponding

to whether the edge is a + or a — edge. The result is a link.




CHAPTER 3
TYPES OF KNOTS

o TORUS KNOT

We call a curve that runs once the short way around the torus a meridian
curve. A curve that runs once around the torus the long way is called a
longitude curve. The trefoil knot wraps three times meridionally around
the torus and twice longitudinally. Every torus knot is a (p, q)-torus knot
for some pair of integers. In fact, the two integers will always be

relatively prime.

If we want to draw a (p, q)-torus knot, we just place p points around the
inside and outside equators of the torus, attach the inside and outside
points directly across the bottom of the torus, and then attach each
outside point to the inside point that is clockwise g points ahead, using a
strand that goes over the top of the torus. In fact, every (p, q) - torus knot
is also a (g, p)-torus knot. Say for instance that we have the trefoil knot,
which we have seen is a (3, 2)-torus knot. A (p, g)-torus knot has a
projection with p (q -1) crossing and a projection with q (p -1) crossings.
Therefore, the crossing number for a (p, q) - torus knot is at most the
smaller of p(g-1) and q(p-1) . It has recently been proved by
KunioMurasugi of the university of Toronto that in fact the smaller of p(q

-1) and q(p-1) is exactly the crossing number of a (p, q)-torus knot .

16
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A solid torus is a doughnut where we include both the interior of the
doughnut as well as the surface. The core curve of a solid torus is the
trivial knot that runs once around the centre of the doughnut. A
meridionally disk of the solid torus is a disk in the solid torus that has a

meridian curve as its boundary.

We can generalize the notation of a torus knot. By definition, a torus
knot is a non-trivial knot that can be placed on the surface of a
standardly embedded torus without crossing over or under itself on the
surface. By standardly embedded, we mean that the torus is unknotted
in space. But certainly, there will be knots that cannot be placed on a
standardly embedded torus but that can be placed on a standardly

embedded genus two surface.

For lack of a better name, let's call these 2- embedded knots since they

can be standardly embedded genus two surface. For instance, the figure

17
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-eight knot is a 2-embeddable knot. More generally, we will say that a
knot K is an n-embeddable knot if K can be placed on a genus n-
standardly embedded surface without crossing, but K cannot be placed

on any standardly embedded surface of lower genus without crossings.

o SATELLITE KNOTS

A second set of knot that has become very important in recent years is
the set of satellite knots. Let K1 be a knot inside an unknotted solid torus.
We note that solid torus in the shape of a second knot K. This will take
the knot K1 that lies inside the original solid torus to a new knot inside
the knotted solid torus. We call this new knot Kz, a satellite knot. The
knot K2 is called the companion knot of the satellite knot. We always
assume that the companion knot is a non-trivial knot, since otherwise
the resulting satellite knot would just be K1 back again. We also always
assume that the knot K hits every meridional disk of the solid torus, and
it cannot be isotoped to miss any of them. We think of the satellite knot
as a knot that stays within a solid torus that has a companion knot as its

core curve, just as a satellite stays within orbit around a planet.

ot

2

There is knotted torus in space that misses the satellite knot, lying in the
compliment of the knot. In fact, this knotted torus is always an
incompressible, but proving this will take a substantial amount of work.
If on the other hand, we take the original knot K1 to be an unknot, but

sitting inside the solid torus twisted up, then the resulting satellite knot

18
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is called whitehead double of the companion knot. The name refers to

the fact that the knot K1 here resembles the white head link.

If the original knot K1 is again unknotted , but sitting inside the solid
torus then the resulting satellite knot is called two-strand cable of the
companion knot .It's as if we had a cable that ran twice around the
companion knot .Again ,the two-strand cable will not be unique, as we

can add twists to it.

The operation of forming a satellite knot can be thought of as a
generalization of the idea of composition. If K1 only has one strand that
reaches longitudinally around the solid torus, then the satellite knot
formed by knotting the solid torus like Kz is in fact the composite knot
Ki1#K2 .

If the knot K1 that we start with is a torus knot, then we call the resulting
satellite knot with companion K2 a cable knot on K2. We can think of it as
taking a cable that wraps around the knot K: a total of p times
meridionally and q times longitudinally. In one field of mathematics
called algebraic geometry, the most prevalent types of knots are cable

knots. Sometimes the cable knots are cables on torus knots.

19
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« HYPERBOLIC KNOTS

A hyperbolic knot is a knot that has a complement that can be given a
metric of constant curvature -1. Usually, we measure the distance
between two points Po(xo, Yo, zo) and P1(x1,y1,z1) in three space using the

formula
d(PoP1) =v(x1-X0)*+(y1-yo) “+(z1-20)
This method for measuring distance is called the Euclidean metric.

We are interested in the 3-dimentional space, so we can't draw the
pictures like we could of the sphere, plane and saddle. But the Euclidean
metric for 3-space that we gave before is an example of a metric with
curvature zero. It is so called flat metric, having no curvature, just like the
plane is flat. The metric that we want to put on the compliment of the
knot is not flat, but rather has curvature -1.The geometry that results is
called the hyperbolic geometry and the metric is called hyperbolic metric.
The hyperbolic 3-space, H? is the simplest example of the 3-dimensional
space that has a hyperbolic metric. Any arc of a circle or diameter in H®

that is perpendicular to the unit sphere is called a geodesic in H?,

We can use the hyperbolic method for measuring distance within the
individual tetrahedral in order to obtain a hyperbolic method for
measuring distance in the entire knot compliment. We then say that the

knot is hyperbolic knot.

Every hyperbolic knot has a hyperbolic volume. This is a positive real
number that can be computed out to as many decimal places are
needed. It is simply the sum of volumes of individual hyperbolic
tetrahedra that make up the knot compliment of the knot, as measured

by our hyperbolic metric. Although it appears that the volume of 3-space

20
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minus the knot would be infinite, it is in fact finite when we measure it

using this hyperbolic method of measuring volume. The hyperbolic

volume is an invariant for the hyperbolic knots, as it depends only on

knot itself and not on any particular projection of knot.

« BRAIDS

Braids are not a particular type of knot. However every knot can be

describe by a braid. A braid is a set of n strings, all of which are attached

to a horizontal bar at the top and at the bottom.

\

\

<

\

\

A

Each strings always head downwards as we move along any one of the

strings from the top bar to the bottom bar. Another way to say the same

thing is that each string intersects any horizontal plane between the two

bars exactly once. We can always pull the bottom bar around and glue it

to the top bar, so that the resulting strings form a knot or link called the

closure of the braid. Therefore every braid corresponds to a particular

——
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knot or link .we can think of there being an axis coming right out of the
page, around which the closure of the braid is wrapped. We then have a
closed braid representation of the knot if there is a choice of orientation
on the knot so that, as we traverse the knot in that direction, we always

travel clockwise around the axis without any backtracking.

We can see two projections of the trefoil with axes, one of which is not a
closed braid around its axis, and the other of which is a closed braid

around its axis

Knots and links can be represented as closed braids every knot or link is

a closed braid .this was first proved by J.W. Alexander in 1923.

Markov's theorem says that two braids Markov equivalent if and only if
they are related through a sequence of the three operations that we have
already seen, which are the operations that obviously give us back the
same open braid, and two additional operations. The first operation is

called the conjugation. The next operation is called stabilization.

22
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CHAPTER 4

KNOTS, LINKS AND GRAPHS

o LINKS IN GRAPHS

The graph K6, called the complete graph on six vertices, is the graph
where every one of the six vertices is connected to every other one by

exactly on edge.

Although these two graphs are isomorphic, they are not isotopic, since
there is no way to deform one of them through spaces to look like the
other, without allowing edges to pass through themselves or each other.

We call a partition way to place Ke in space, an embedding of K.

Let's call a triangle in an embedding of K¢ any set of three consecutive
edges that form a triangle in the graph. If we choose any three vertices,
we can form a triangle from the edges connecting them. We can also

form a second triangle from the remaining three vertices.

Every embedding of Ks contains at least one pair of linked triangles. No
matter how we place Ks in space, there will be always a link contained
within it. Even if we change the embedding by letting one edge pass
through another specifically in order to destroy a link in the original
embedding, we can't help but either create a new link in the process or at

least leave another link in the embedding.




We need a way to distinguish embeddings, a so-called invariant for the
embedding. Suppose we have a particular embedding of K¢ .Each pair of
disjoint triangles in the embedding has a linking number once we orient
the two triangles. But, changing once an orientation on one of the
triangles only changes the sign of the linking number, not the absolute
value of the linking number .Since we don't want to bother with
orientations, we just look at the absolute values of the linking number for

each pair of disjoint triangles in the embedding.

Any graph that containing Ke as the sub graph will also contain a link in
any embedding of it into three-space. We say that a graph is intrinsically
linked. If it has the property that any embedding of it in three-space

contains a nontrivial link.

We define an expansion of a graph G to be a new graph obtained from g
by splitting a vertex of G. By this we mean replacing a particular vertex v
of G by two vertices u and w connected by a new edge, and replacing
each of the old edges that ended at v by a nhew edge that begins where
the old edge began and ends at either u or w. There are lots of choices
for expansions even if we have already chosen the vertex to expand. If G

is intrinsically linked, so is any expansion of G.

« KNOTS IN GRAPHS.

A Hamiltonian cycle in a graph is a sequence of edges in the graph such
that any two consecutive edges share a vertex, the last edge and the first
edge share a vertex, and every vertex is hit by a pair of consecutive
edges exactly once .Together the edges in the Hamiltonian cycle make
up a loop in the graph that take hits every vertex exactly once. Such a

loop may be either knotted or unknotted. In the same paper in which they

24
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proved K is intrinsically linked, Gordon and Conway also proved that if
the graph K7 is embedded in space in any manner whatsoever ,it will

always contain a Hamiltonian cycle that is knotted.

To find an embedding of K7 containing no trefoil knots: First we need to
look at a new invariant for knots and links called the Arf Invariant. Like
the variable V we define in the earlier sections, the arf invariant will
always have a value 0 or 1. There are several ways to define the arf
invariant. We take a point of view due to Louis Kauffman. Let's define a

pass-move to be a change in a projection as in the figure.

A pair of oppositely oriented strands can be passed through another pair
of oppositely oriented strands. Such a move certainly can change the
knot that we are dealing with. We call two knots pass equivalent if there
exists a sequence of pass-moves that takes us from the one knot to the
other, where we can rearrange the projection of the knot anyway that we

want after each pass-move.

Every knot is pass equivalent to a composition of trivial knots and trefoil
knots. However, since the composition of any knot K with the trivial knot
just gives the knot K back again, we have shown that every knot is pass
equivalent to either the trivial knots or a composition of trefoil knots.
Left hand trefoil, appearing in the particular projection shown here, we
can obtain its mirror image by passing all of the overlapping bands

through each other.

25
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We will now define the arf invariant a(K) of a knot K to be 0 if the knot is
pass equivalent to the unknot and to be 1, if the pass equivalent to the

trefoil knot.

The arf invariant has one very nice property, namely if K+, K- and L are
projections that are identical outside the region shown, and if K+ and K-
are knots, while L is a two-component link where each of the strands
shown in the picture of L corresponds to a distinct component, then the

arf invariants of the two knots are related through equation

a(K+) = a(K) + 1K (L1,L2)

X ieh

Every embedding of K7 contains a knotted Hamiltonian cycle. Given a
particular embedding of K7 we first define w to be the sum of the Arf
invariants summing over every Hamiltonian cycle in the graph. We
actually don’t care about w itself, but rather, we care about whether it is
odd or even. Therefore we define Q to be 0 if w is even and to be 1 if wis
odd. Conway and Gordon prove that a crossing change leaves Q
unaffected. Since Q is unaffected by crossing changes, Q must be the
same for every embedding of K7 . in particular if Q =1 for any specific
embedding, Q =1 for every specific embedding. In fact it is tedious but

not difficult to show that for the embedding of K7 all of the Hamiltonian
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cycles except one are unknotted and the last Hamiltonian cycle is a
trefoil knot. Hence Q =1 for this embedding and therefore for all
embedding. Finally, if Q = 1, for every embedding, then for a given
embedding, it cannot be the case that all the Hamiltonian cycles in that
embedding are unknotted. Therefore every embedding of K7 contains a

knotted Hamiltonian cycle.

In 1988, Miki Shimabara proved that any embedding of the graph Kss
also contains a knotted Hamiltonian cycle. The graph Kss is called
bipartite graphs. It is obtained by taking two sets of 5 vertices and
attaching each vertex in the first set to every one of the vertices in the

second set by edges.

We say that a graph is intrinsically knotted if every embedding of the
graph in three-space contains a knotted cycle. Note that if a graph
contains a sub graph that is intrinsically knotted, it's also must be

intrinsically knotted.
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APPLICATIONS

Knots Theory in Chemistry

The Molecular chirality

One of the most important characteristics of a knot is its chirality.
During the years, all the knots theorists have tried to find a way to
determinate it. A molecule is said to be chemically achiral if it can be
changed into its mirror image. Otherwise is said to be chemically chiral.
This is the definition given in chemistry. In mathematics there are other
two definitions, geometrical chirality and topological chirality
according to the characteristics of the molecule, respectively rigid or

flexible.

Establishing the topological chirality of a molecule
The following mathematical methods are used to find out if a molecule

is topological chiral or not.

s

Figure3.12:AmolecularM obiusladder.

Method 1: Knot polynomial . This method can be used when a
molecule is knotted. Different theorists tried to find ways to
distinguish whether a knot is chiral or not. The Jones polynomial is
the only method which can actually determinate such difference.
Indeed every chiral knot and its mirror image have different Jones
polynomials. However, if the Jones polynomial is the same it
doesn't necessarily mean that the knot is achiral. That is, the
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Jones polynomial is useful toestablish topological chirality, but not
for proving topological achirality. The onon disadvantage of this
method is that not all the molecules are knotted. For example the
Mo biu ladder (fig.3.12) doesn’t contain any link or knot. So
another method is needed in order to establish if this molecule is
topologically chiral.

Knot theory in molecular Biology

F.H.C Crick and J.D Watson is one of the most remarkable insights of
the 20™ century ,unraveled the basic structure of DNA. A molecule of
DNA may be thought of as two linear strands interwined in the form of a
double helix with a linear axis . A molecule of DNA may also take the
form of aring ,and so it can become tangled or knotted .As DNA has
the structure of two linear strands ,this however is the not only possible
structure of DNA and in what follows the next description is probably
more easy to comprehend in the context of knot theory the information
the DNA molecule carries that is the arrangement of it's nucleotide base
pair ,is unrelated to how it is knotted .so may be we should dismiss the
knot as useful tool in molecular biology (without much significance).
How ever recent researches has shown that the knot type has an
important effect on the actual function of the DNA molecule in the cell.
Therefore using knot theory techniques ,it may be possible to bring
further insight into the structure of DNA molecule .At present the extent
knot theory may further help in the understanding of mechanism of

recombination of the DNA molecule .
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CONCLUSION

In the project, about knots, their compositions and also the verities
of knots have been reviewed. We also discussed about the links and
graphs. We have seen that knot theory has many applications as in
DNA synthesis. The original motivation for the founders of knot theory
was to create a table of knot and links, which are knots of several
components entangled each other. More than six billion knots and links
are tabulated. Since the beginning of knot theory is in the nineteenth
century. As the knot theory have been developing and the importance
is also increased. The basic knot theory has numerous applications and

we are still trying to work on the knot theory in higher dimensions.
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