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INTRODUCTION

Jordan canonical form is a representation of a linear transformation over a
finite dimensional complex vector space by a particular kind of upper
triangular matrix. Every such linear transformation has a unique Jordan
canonical form, which has useful properties Jordan canonical form 1s a
representation of linear transformation over a finite: it 1s easy to describe and
well suited for computations.

Less abstractly one can speak of the Jordan canonical form of a square
matrix. Every square matrix is similar to a unique matrix in Jordan canonical
form. Since similar matrices correspond to representation of the same linear
transformation with respect to different basis by the change of basis theorem.

Jordan canonical form can be thought as a generalization of diagonalizability
to arbitrary linear transformation [or matrices] indeed the Jordan canonical
form of a diagonalizable linear transformation [or a diagonalizable matrix] is
a diagonal matrix.




Chapter: 1

PRELIMINARIES

SECTION: 1.1
EIGENVECTORS AND EIGENVALUES

Let A be an Xn matrix A a scalar be an eigenvalue of A we shall mean a
scalar A for which there exist a non-zero n X 1 matrix such that Ax = Ax,
such a column matrix x 1s called eigenvector associated with A.

SECTION: 1.2
SIMILAR MATRICES
Definition: 1

A matrix A i1s similar to a matrix B if there exists an invertible matrix P
such that,

A=P1BP (1

If we pre-multiply (1) by P, it follows that A 1s similar to B if and only 1f
there exist a non-singular matrix P such that,

PA = BP (2)

Furthermore if we post-multiply (2) by P~ .we see that A is similar to B
if and only 1f B 1s similar A.

Example: 1

—4
—Z

Determine whether A = [_42 31] Is similar to B = B




Solution:

A will be similar to B if and only if there exists a non-singular matrix P such
that (2) 1s satisfied. Designate P by E 2] , then PA=BP implies that
[(4{1 —2b) (3a-— b)] B [(5& —4a) (5b—44d)
(4c—2d) @Bc—-d)| |(Ba-2c) (3b-2d)

Equating corresponding elements, we find that the elements of P must
satisfy the four equations:

-a-2b=4c¢=0),
3a-6b+4d=0,
-3a+6¢-2d=0,
-3b+3c+d=0.

A solution to this set of equations 1s a=-2d/3, b=1/d, with c=0, d arbitrary.

ThusP:E 3:31_02 é]

P 1s invertible if d # 0. Thus by choosing d # 0, we obtain an invertible
matrix P that satisfies (2) which implies that A 1s similar to B.

SECTION: 1.3

DIAGONALIZABLE MATRICES

Definition: 2

A matrix 1s diagonalizable if it 1s similar to a diagonalizable matrix.

Example: 2

Determine whether A = LlL g 1s diagonalizable.

10




Solution:

The eigenvalues of A are -1 and 5. Since the eigenvalues are distinct. Their

respective eigenvector X_; = Lﬂ and x, = B] are linearly independent,

hence the matrix 1s diagonalizable.
We choose their M = [_i % or M = E _ﬂ

Making the first choice, we find that
D=M"1AM

= Tl Sl 2l=[o
Making the choice we find
D=M1AM

L i all d=k s

11




SECTION: 2.1

Chapter: 2
GENERALIZED EIGENVECTORS

GENERALIZED EIGENVECTORS

In the previous chapter, we showed that if a matrix A has linearly
independent eigenvector associated with it and hence i1s diagonalizable, then
well-defined matrix functions of A can be computed. We now generalize our
analysis and obtain similar results begin by generalizing the concept of the
eigenvector.

Definition: 1

A vector Xy, 1S a generalized eigenvector of type m corresponding to the
matrix A and the eigenvalue A if (A — AI)™x,, = 0 but (A-AD)™! #0.

For example

2 1 -1 0]
HTA=]10 2 1], then x3=|0
0o 0 2. 1.
corresponding to A = 2, since
0 0 O][0] 0]
(A-2’x3={0 0 O0||0[= [0
0 0 O0JIL1. 10
But,
0 0 17[0
(A—ZI)E)K}: 0 0 0]]|0]|=
0 0 OJL1.

Also.

-

=

1s a generalized eigenvector of type 3

£ 0

12




—

X2 =

(A-21)*x>
But,

(A-2D)'xo
Furthermore.,

X

1s a generalized eigenvector of type 2 corresponding to A = 2

1

0
0
0

—=

1
0

0.

-

e

=

=

pd

=

* 0

1s a generalized eigenvector of type 1 corresponding

to the eigenvalue A = 2 since (A-2I)'x; = 0 but (A-2I)"x; = x; # 0.

We note for a reference that a generalized eigenvector of type 1 1s in fact an

eigenvector.

Example: 2.1.1

It 1s known that the matrix A =

[ &
2
=0

0
1

1

5
1| has a generalized
—1]

eigenvector of type 2 corresponding to A = 2.Find 1t?

Solution:

We seek a vector x2 such that (A-2I)*x, = 0 and designate X2 by

(A-2I)x>

N <

X
v |, then
27
=X+ 2¥]
X + 2y | and
2x — 4y

13




[ 3 0 ANES - 3x+ 22
(A-2Dx; =] 2 -1 1{lyl=]| 2x—y+2z
-5 1 -31tz- |—3Xx + vy — 3z
For (A-2I)*x; = 0, it follows that x = 2y.Using this result we obtain
6y + 2z 7
(A-2Dx;=| 3y +z
L —Y— & |

Since this vector must not be zero, it follows that z # -3y.There are
infinitely many values of x, y, z that simultaneously satisty the requirements

x =2y and

z # -3y (for instance x = 2, y = 1, z = 4).The simplest choice 1s x =y = 0,

z=1
o

Thus, x> = [ 0] 1s a generalized eigenvector of type 2 corresponding A = 2.
Wil

Example: 2.1.2

4 1

0 4
corresponding to A =4. Find 1t?

It 1s known the matrix A = [ ] has a generalized eigenvector of type 2,

Solution:

We seek a vector x5 such that (A-4I)* x, = 0 and (A-4D)x; # 0

_ X
Designate x> by[y], then

aawtx=y oll1=l

14




Thus we see that every vector has the property that (A-4I)*x, = 0. Hence

need place no restrictions on either x or y to achieve this result

=3 E1-E

Cannot be the zero vector, it must be the case that y # 0. Thus by choosing

x=0and y =1, we obtain

Xy = [2] as a generalized eigenvector of type 2 corresponding to A=4

SECTION: 2.2
CHAINS
Definition: 2

Let x,, be a generalized eigenvector of type m corresponding to the matrix A

and the eigenvalue A.
The chain generated by xn, 1s a set of vectors {Xm Xm-1 ... X1}

given by

15




Xm-1 = (A-ADXm
Xm-2 = (A-AD*Xm = (A-ADXm.1

Xm-3 = (A-AD)’Xm = (A-ADXm-2

x; = (A-AD™x, = (A-ADx»

Thus 1n general,

X; = (A-AD™ Xy = (A-AD™x341 5 =1,2,...,m-1 (1)
Theorem: 2.2.1

X; (given by (1)) is a generalized eigenvector of type j corresponding to the

eigenvalue A

Proof:

Since xp, 18 a generalized eigenvector of type m, (A-AI)"x, = 0 and
(A-AD™'x, £ 0.

Thus using (1) we find that,

(A-MD'x; = (A-ADY(A-AD™ Xy = (A-M)™Xm = 0 and

16




(A-AD"x; = (A-AD {AAD™ %y, = (A-AD)™ x,, # 0
Which together imply theorem: 1

Thus once we have found a generalized eigenvector of type m, it 1s simple

to obtain a generalized eigenvector of any type less than m.

For example, we found 1n the previous section that

corresponding to A = 5.

Using theorem: 1, we now can state that

0

1

0 1-—
B 10 5
x> = (A-5D)x3 = 0 0
0 O 110

=
= I 3‘ 1s a generalized eigenvector of
0

O O NN
B NS

type 2 corresponding to A = 5 while,

17




X = (A-50)*x3 =

O OO

1~2 471[—-2 2

¥ & 2 o [ | 1s a generalized eigenvector
0 0 3] O 0

0 O0-14L 0

0

of type 1, hence an eigenvector corresponding to A =35.

01 1-27 12
The set {x3.X2,X1} = [1]‘, I g‘ : I; 1s the chain generated by xs.
0 01 LO

The value of the chain 1s hinted at by the following theorem.

Theorem: 2.2.2

A chain is a linearly independent set of vectors.

Proof:

Let {Xm,Xm-1,. - .,X1} be a chain generated from x, a generalized eigenvector

of type m corresponding to the eigenvalue A of a matrix A and consider the

vector equation
CoXmt Con1ZiiiTF oo FEIXY (")

In order to prove that this chain 1s linearly independent set, we must show

that the only constants satisfying the above equation are ¢,y =Cm-1 = ... = ¢

= 0.

18




Multiply the equation by (A-AI)™' and note that forj=1,2, ... ,m- 1.
(A-AD™ex; = ci(A-AD™ I (A-MDYx;

= ¢;(A-MD)™! x 0 (Since x; is generalized eigenvector of

type J)

Thus,
Cm(A—}LI)m_ le — O

However, since Xm is a generalized eigenvector of type m, (A-AD™ 'xm # 0,
from which it follows that ¢, = 0.Substituting ¢,, = 0 in (*) and then multiply
(*) by (A-AD™2, we find by similar reasoning that cn.; = 0.Continuing this
process, we finally obtain ¢ = ¢m-1 = . . . = ¢; = 0, which implies that the

chain 1s linearly independent.

19




Chapter: 3
JORDAN CANONICAL FORM

SECTION: 3.1
CANONICAL BASIS

Theorem: 1

Every n X n matrix A possesses n linearly independent generalized
eigenvectors, henceforth abbreviated liges. Generalized eigenvectors
corresponding to distinct eigenvectors are linearly independent. If A is an
Eigen value of A of multiplicity v, then A will have v, liges corresponding to

A.

For every given matrix A, there are infinitely many ways to pick the n liges.
If they are chosen 1n a particularly judicious manner, we can use these vectors
to show that A 1s similar to an “almost diagonal matrix™.

Definition:

A set of n liges (Linearly independent generalized eigenvectors) i1s a
canonical basis for an n x n matrix if the set 1s composed entirely of chains.

Thus, once we have determined that a generalized eigenvector of type m 1s
in a canonical basis. It follows that m-1 vectors Xm-1, Xjy—2, ... 5 X1 that are
in the chain generated by X m.

Let A; be an eigenvalue of A of multiplicity v. First find the rank of the
matrixes

(A-A;I), (A - A; D) 2, ..., (A- A;I)™. The integer m is determined to be first
integer for which (A - A;I) ™ has rank n — v (n being the no of rows and
columns of A 1e, A 1sn x n).

Example: 1

Determine m corresponding to A; = 2 for

20




21 -1 0 0 0
0 2 1 00
0 0 2 0 0
0 0 O
0O 0 0 O
0O 0 0 0 0

2
— e D

3
[

e

Solution:

n = 6 and the eigenvalue A; = 2 has multiplicity v=5.Hence n — v = 1.

01 -10 00
O 0 1 0 0 0
0 0 0 0 0 0
O 0 0 01 0
O 0 0 0 0 1
0 0 0 0 0 2

has rank 4.

O 01 0 0 0O
O 0 0 0 0 0
O 0 0 0 0 0
O 0 0 0 O
O 0 0 0 0 2
0O 0 0 0 O

has rank 2.

0 0 0 0 0 0
O 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0O
0 0 0 0

(A-2I) =

(A-2I)* =

p—
e’

(A-2I)° =

- o o O
oo & M

Has rank 1=n —v.
Theretore, corresponding to A; = 2, we have m=3

Now, define




px = r((A-MIDF) - r((A-MDY) k=123 .m.

pkx designates the no of liges of type k corresponding to the eigenvalue A; that
will appear in a canonical basis of A.

r(A-LD' = r(I) = n.
Example: 2

Determine how many eigenvectors of type of each type corresponding toA,=
2 will appear 1n a canonical basis for the examplel.

Solution:

Using the results of example 1, we have that
ps=r(A-2D?—-r(A-2DD3=2-1=1
p,=r(A—2D'—r(A—2D%*=4—-2=2
pr=r(A—2D° —r(A—-2D1=6—-4=2.

Thus a canonical basis for the matrix given in example 1 will have,
corresponding to A;=2 , one generalized eigenvector of type 3, two liges of
types 2 and two liges of type 1.

Example: 3

Find a canonical basis for the A given 1n example 1.

Solution:

We first find liges corresponding to A; = 2

From example 2, we know that there 1s one generalized eigenvector of
type 3;

we find the vector to be,

22




== =

-0

Then we can obtain X, and X4 as generalized eigenvectors of type 2 and 1 ,
where

=1
1
0
X2 = (A—2I)x3 = 0
0
- 0
and
_1-
0
_ 10
X1 = (A—2I)x2 = 0
0
L()-

From example 2 we know that a canonical basis for A also has two liges of
type 2 corresponding to A; =2. We already found one of these vectors to be

X9.

Therefore we seek a generalized eigenvector y,of type 2that is linearly
independent of {X3,X5,X;}.

Designate y, =

We find that in order for y, to be a generalized eigenvector of type 2,

w, = X, = 0, 0r v,0r y, must be non zero ,and v,and x, are arbitrary.

23




Ifwepicku, =w, =x, =y, =2, =0,v, =1,
_0-

V2 =

O O

L

As a generalized eigenvector of type 2. This vector, however, 1s not linearly
independent of {X3,X,, X4} since y, = X3 + Xj.

If instead we choose u,_v, =w, =x, = 2,=0,y, = 1,

_0-

0
: 0
we obtain y, = 0
1

-
which satisfies all the necessary requirement.

(Note that there are many other adequate choices for y, 1n particular we
could have chosen u, =w, =x, =2z, v, =y, = 1)

07

0

0
yi=A-2I)y; = 1

0

ol

1s a generalized eigenvector of type 1.

From example 2, we know that

Having found all the liges corresponding to A, = 2, we direct our attention to
the liges corresponding to A, = 4. From our previous discussion, we know
that the only generalized eigenvectors corresponding to A, = 4 1is the
eigenvector itself,

which we determine to be

24




BN OO O

Thus a canonical basis for A is {X3,X»,X1,V2,V1,Z1} note that due to
theorem 1, we do not have to check whetherz; 1s linearly independent of

{X3,X2,X1,¥2,V1}

Since Z4 corresponds to A, and all the other vectors correspond to 4; where

Ay # A, , linear independence is guaranteed.

Example:4
Find a canonical basis for
m 1 o0 -1
fp b
(0 0 0 1
Solution:

A1sa 4 X 4 and 4; = 1i1s an eigenvalue of multiplicity 4; hence,

n=4, v=4 and n-v=0.

0 1 0 -1
10 0 0 O
B-l)= 0 0 0 1
0 0 0 O
Has type 2, and
0 0 0 0
mz_10 0 0 0
A-1D"=1o 0 0 o
0 0 0 O

Has type 0 = n —v. Thus, m = 2, p, = r(A-1I) — r(A- 1I)2 =2 -0 =2 and

25




p1 =rA-1D)°-r(A—-1D)'=4-2=2;

Hence a canonical basis for A will have two liges of type 2 and two liges of
type 1. In order for a vector

W-
X
y

e d

To be a generalized Eigen vector of type 2, either X or z must be nonzero
and w and y arbitrary. If we first choose x=1, w=y=2=0,

And then choose z=1, w=x=y=0, we obtain two liges of type 2 to be

o0 0
L0 1

Note that we could have chosen w, X, y, z in such a manner as to generate 4
linearly independent generalized eigenvectors of type 2.

The vectors

17 07
1 1
0 and 1
0- 0-

Together with X, and y, form such a set. Thus we immediately have found
a set of 4 liges corresponding to A; = 1 .This set; however is not a canonical
basis for A, since it is not composed for chains. In order to obtain a canonical
basis for A, we use only to this vectors and form chains from them.

We obtain the two liges of typel to be,

1 =1

X1=(Al)xz=l ‘ andy; = (A—Dy; =

e R s o
-

26




Thus a canonical basis for A is {X, X1,V2, V1} , which consists of the two
chains{X,, X1 } and {y>, y; Jeach containing to vectors .

Example: 5
4 0 1 O
| ' _ 3 2 3 0
Find a canonical basis for A = 1. 0 2 0
4 0 1 2

Solution:

The characteristic equation for A is (1 —3)?(4 — 2)? = 0; hence, ;=3
and A, = 2 are both eigenvalues of multiplicity 2. For A;= 3, we find that »n
—v =2, m=2,p, =1 and p;=1, so that a canonical basis for A has one
generalized eigenvector of type 2 and one generalized eigenvector of type 1
corresponding to A; = 3 . A generalized eigenvector of type 2 1s

1-
Xo= g :
1.
1 -
_ ] —1
Kl—(A-3I) X2 = -1
i

Is a generalized eigenvector of type 1.

For A, =2, we find that n — v =2, m =1 and A;= 2hence there two generalized
Eigen vectors of type 1 corresponding to 4,= 2.

0 0
We obtain yl—‘é‘ and XI—IO‘, as the required vector. Thus a canonical
0 1

basis for A is {X7, X1, V1,21}

which consists of one chain corresponding two vectors {X,,X¢} and two
chains containing one vector a piece{yy } and {Xq }

27




SECTION: 3.2
JORDAN CANONICAL FORM

Every matrix 1s similar to an at most diagonal matrix or In more precise
terminology, a matrix in Jordan canonical form. We start by defining a square
matrix Sk(k represent some positive integer and has no direct bearing on the

order of Sk).

2 1 00 .- 00

0o 4 10 -- 0 0
o0 4 1-- 00
Sp=]. - e ¢
6 0 0 0 --- 4 1
o0 0 0 0 --- 0 4

Thus, Sk 1s a matrix that has all of its diagonal elements equal to Ay, all of its
super diagonal elements.ie all elements directly above the diagonal elements
equal to 1 and all of 1ts other elements equal to zero.,

Definition:

A square matrix A is in Jordan canonical form if it is a diagonal matrix or
can be expressed 1n either one of the following two partitioned forms.

28




Hence D is the diagonal matrix and Sk(k=1,2,3,...1).

Consider the following matrices.

_ . [ooo0o000
i i 2100 0 _ i
210 0 02000 0 21 0 17 . :
02100 2 2 0
020 0 002100 (0210
00200 0 2 2
00 3 1 000200 [0021
000 21 00 2
00 0 3 0000 2 1 000 2" -
: : 0000 2 : >
- - 000002
(a) (b) (c) (d) (e)

Matrix (a) 1s in Jordan canonical form, since 1t can be written

[Sl 0},where Slz{2 1} and Sz = F ]}
0 S2 0o 2 0 3

Matrix (b) 1s in Jordan canonical form, since it can be expressed

210

S1 0 2 1
,where Si=|0 2 1| and S2=
b e 0 0 2 5

Matrix (c) 1s also 1n Jordan canonical form, since it can be also be expressed

as
(L 0 0] 0 0 2 1
0 S1 0/, where D = and S1=S*= :
0 2 0 2
0 0 52

Matrix (d) and (e) are not 1in Jordan canonical form, because of the non-zero
term 1n (1, 4) position and the second due to the 2°s on the super diagonal.

Note that, a matrix in Jordan canonical form has non-zero elements only on
the main diagonal and that the elements on the super diagonal are restricted
to be either zero or one. In particular a diagonal matrix i1s a matrix in Jordan
canonical form that has all its super diagonal elements equal to zero.

29




Definition:

Let A be an n x n matrix. A generalized model matrix M for Aisan n X n
matrix whose columns considered as vectors form a canonical basis for A
and appears in M according to the following rules:

(M1): All chains consisting of one vector (ie, one vector in length) appear in
the first column of M.

(M2): All vectors of the same chain appear together in adjacent columns of
M.

(M3): Each chain appear in M 1n order of increasing type.(ie; the generalized
eigenvectors of type one appears before the generalized eigenvector of type
two of the same chain, which appears before the generalized eigenvector of
type three of the same chain etc. )

Example: 1

Find a generalized moden matrix M corresponding to the A given in example
5 of section 3.1

Solution:

In this example we found that a canonical basis for A has one chain of two
vectors {X2, x4 jand two chain of one vectors each {yq }and{z4 }.

Thus the first two columns of M must be yjand z4 due to (M1) while the
third and forth columns must be xqandx, respectively due to (M3).

Hence,
0 0 1 1
M=[y; z; x1 x2] = é g :% 3
g 1 3 4

30




M=[z; y1 X1 x2]=

—_o o O
cCoR o
|
_

-

Example: 2

Find a generalized model matrix M corresponding to the A given in Example
4 of section 3.1

Solution:

In the example we found that a canonical basis for A has two chain consisting
of two vectors a piece {X5, X }and {y,, ¥1}. since this canonical basis has
no chain consisting of one vector ,(M1) does not apply.

From (M2), we assign either x,andx to the first two columns of M and
y,andy,to the last columns of M or, alternatively, y, and y4 to the first two
columns of M and x,andx; to the last two columns of M we cannot
however, define M =[x; X3 Y, X3] since this alignment would split the
{x,, x4 Jchain and violate (M2). Due to (M3), x; must precede x; and x> must
precede y,.

Hence,
1 0 -1 0
M=[x{ x2 y1 Y2l = g é 2 g
0 0 0 1
-1 0 1 0
M=[y; ¥2 x1 x2] = g 8 g (1)
0 1 0 0

Examples 1 and 2 show that M is not unique. The important fact, however,
1s that for any arbitrary n X nmatrix A, there does exist at least one
generalized modal matrix M corresponding to it. Furthermore, since the
columns of M considered as vectors form a linearly independent set, it

31




follows that the column rank of M i1s n, the rank of M 1s n, the determinant
of M is nonzero, and M is invertible (that is, M™! exists).

Now let A represent any n x n matrix and let M be a generalized modal
matrix for A. Then, one can show that

AM =MJ
where J 1s a matrix in Jordan canonical form. By either premultiplying or

postmultiplying the above equation by M we obtain either

J=M'AM

or

A =MIM"

Theorem: I

Every n x n matrix A is similar to a matrix in Jordan canonical form.

Example: 3
Verify J = M~ 1AM for the example 1.

Solution:

0 0 1 1
L. O =1L 3
0 0 -1 0
0 1 3 1

= =l

M =

We compute, M1 =
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(-3 1 -4 0|4 01 O][0 O 1 1]
=1 & 2 1|2 9 F G 4 =i 4
Thus, M'AM =
0 0 =1 Gl|l=1 4 2 010 0 =1 T
1 0 1 0f|4 01 2]|[01 3 1
2 0 0 0
0 2 00 . _
= 5 = J, A matrix in Jordan canonical form.
0 0 0 3
Example: 4
Find a matrix in Jordan canonical form that is similar to
0 4 2
A=|-3 8 3
4 -8 -2
Solution:

The characteristic equation of A is (1 —2)3 = 0 hence A = 2 is an Eigen
value of multiplicity three.

Following the procedures of the previous solution we find that r(A-2I)=1 and
r(A-2I) =0 =n —v. Thus p, = 1 and p; = 2 which implies that a canonical
basis for A will contain one lige of type 2 and two liges of type 1 or
equivalently one chain of two vectors {X5, X1 } and one chain of vectors {yj }.

Designating M=[y; X; X,| we find that

2 2 0
M=|1 3 0
0 —4 1
'3 —2 D
M-lzi 1 2 0
4 8 4

33




0

0
2
0

1].

2.

0
4

0
8
0

8

0
0

8.

~ | =

M-1AM

J =
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Chapter: 4

PROPERTIES OF JORDAN CANONICAL FORM

SECTION: 4.1

FUNCTION OF MATRICES - GENERAL CASE

We can develop a method for computing functions of non diagonalizable
matrices. We begin by directing our attention to those matrices that are

already 1n Jordan canonical form.

Consider any arbitrary nxn matrix J in the Jordan canonical form

D O D O D2
5, S S{

J:= - i —
O ) O s, O
D3
P=g.g2| S O
0 "a
In general,
" 0]
J* = > n=0, 1,2, 3,.......

0 "¢
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Furthermore, 1f f{z) is well defined function for J or equivalently D, Si... S,

f(D)

0 fS,) |

since f{D) has already been determined, we only need develop a method for
calculating f(§},) 1n order to have f(J) determined completely . Now we have
(p+1)X (p+1) matrix S;.defined by

‘lk 1 D “re- 0 U

0 A4 1 0 0
=0 0 A 10
0 0 O i 1
0 0 0 0 i

It can be shown that

f'(A) F"(4) o) |
fay Do D8 p!*’ |
0 fu BA TF_”(fﬁ)'
_ - p—1)!
f(S,) = fomon |
0 0 f4) --- o —9)
0 0 0 - f) |
Example: 4.1.1
(2t 1 0
Find eSkif Sk=|0 2« 1|d
0 0
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Solution:

[n this case, we take A=2t, f(Sk) = e5k and f(A) = ek

e’k = f(Sk) =

Q) fA) Sy

Example: 4.1.2

Find J¢if J=

Solution:

=

Ak
e

0
0

e

e o o D D IN

Ak

F(A)
0

p %43 |

Ak
e

Ak
e

e o o DWW 2
oo RO O

f(4)
f(4)

O O =t e OO
o = O OO

J 1s the Jordan canonical form

In this case, f(J) = J°.It follows that

D 0
I=], S,
D¢ 0
6 _
J_’o S$

(1)
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We find that,

D= (2)

o 370 72

And with A= 1

r Ir fr”(‘;i‘l)-l
Aq Aq
foy =S e
ss=| 0 f@an r@y =2
g g f({r)h) f'(A)
f(a) ]
28 625 1524 2047
o a2 615 154
0 0 25 64
0 0 0 25 .
(D6 6(1)5 15(1)* 20(1)*
o @ 6Q)° 15(1)*
0 0 (D 6(1)°
0 0 0 (1)
1 6 15 20
1o 1 6 15
10 0 1 6 )
0 0 0 1.
Substituting (2) and (3) to (1), we obtain
64 0 0 0 0 O
0 729 0 0 0 O
p_|0 0 1 6 15 20
o 0o 0 1 6 15
0 0 0 0 1 6
L0 0 0 0 0 14

Now let A be an n X n matrix. We know from the previous section that there
exist a matrix J in Jordan canonical form and an invertible generalized modal
matrix M such that
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A =AJM!
We have,
fAA) = MI)M!

Providing, of course, that f(A) 1s well-defined. Thus, f{A) 1s obtained simply
by first calculating f(J), which can be done quite easily, then premultiplying
f(J) by M, and finally postmultiplying this result by M.

Example: 4.1.3

Find e? if
0 4 2|
A=1]|-3 8 3
4 -8 -2
Solution:

From Example 4 of section: 3.2 we have that a modal matrix

for A 1s

[2 2 0] 2 0 O]
M=|1 3 OlandJ=|0 2 1
0 —4 1. 0 0 2.
Thus, e® = Me)M™'. In order to calculate ¢’, we note that
D O
Ja [0 51
where D 1s the 1 x 1 matrix [2] and S1 1s the 2 x 2 matrix
[2 1
0 21

we find that

i




and

2
D ec 0 0
EJ:’EO 821‘: 0 92 E’Z
0 0 e?
Thus,
2 2 01le2 0 013 -2 0'1
eA——MeJMl—Il 3 0|0 e? e?||—-1 2 01
0 —4 11L0 0 e?11l-4 8 4.
-1 4 ¢.q
=e’|1-3 7 3
. 4 -8 -3
SECTION: 4.2

PROPERTIES OF JORDAN CANONICAL FORM

It 1s in general, difficult to find the Jordan canonical form of the
matrix, but knowledge of certain elementary facts simplifies the task. We
assume that A 1s an n x n matrix and the characteristic polynomial of A
factors completely, say pa(4) = (a; — A )™ ... ... (ag — A)™s, where
aip, ... .....,as are distinct. Further, let the minimum polynomial of A be
ma(A)= (A —aq)™..... (A — as)ns. Let J be Jordan canonical form of A and

assume J;...J; are the Jordan blocks of J.

Since J and A are similar they have same characteristic polynomial and since
J 1s upper triangular, the eigenvalue of J lie on the diagonal. Therefore the
following theorems are true.

Theorem: 4.2.1

The sum of the orders of the blocks in which a; occurs on the diagonal is m;;
ie, a; occurs on the diagonal of J m; times.

Now let S be a non-singular matrix such that S*AS=J or AS=SJ.
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If § = [X;... Xz], where X; is the j-th column of S then X, ... X,, are linearly

independent and we have

AS = [ax1 . . . AXH]
=8J
(L s ]
=[x1 ... Xn]|°
_{-} . ﬁ;_

=[laiX: Xi+aiXo.. Xe-1+aiXer aXe+l Xr+1+aXe+2..]

where a; 1s the eigenvalue associated with J;and J; 1s r x r. If we let
Ai= A - ail and 1f we equate the columns of AS and SJ, we have

AX; = EI;X; ::}AIXJ = () AQX;*+} =:{)
AXQ = Xj+ﬂjX2 :}AJXE — Xj' A;’Xr+2 — X;-+1

AX,= X-1+a;1 X, =>A1X,=X,-1

A basis of the above form 1s called a Jordan basis. From the above
computation one sees that X;, X,.; ... are linearly independent eigenvectors

and there 1s one of them for each Jordan block of J.

Theorem: 4.2.2

The no of the blocks associated with the eigenvalue a; is equal to the number
of linearly independent eigenvectors associated with a; (There is a block in

J for each independent eigenvectors).
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CONCLUSION

Project was done on Jordan canonical form. In this project we have seen
how to find Jordan canonical form of a matrix, its properties, generalized
Eigenvectors and function of matrices

We conclude from the project that Jordan canonical form 1s one of the
important and useful concepts in linear algebra. The Jordan canonical form
of a linear transformation or of a matrix encodes all of the structural
information about that linear transformation or matrix.
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