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            INTRODUCTION 

Topology is literally means the study of surfaces and is 

concerned with the property of a geometric object that 

are preserved under continuous deformation such as 

twisting bending but not tearing. It can be also used by 

persons from other areas of mathematics, computer 

science, physics etc. In this project, we aim to study the 

relation of geometry and topology. Further, we 

intended to study the various concepts on a 

topological spaces.   

 

 

 

 

                

                 CHAPTER 1 



             PRELIMINARIES 

SECTION-1.1 

                        SETS AND FUNCTIONS 

 

• Axiomatic Set Theory 
           The approach to set theory in which an 

attempt is made to define a set an postulate a 

number of axioms about sets so as to avoid 

paradoxes is known as the axiomatic set theory. 

 

• Universal And Null Sets 
            All sets under investigation are subsets of a 

fixed set. We call this set the universal set or 

universe of discourse and denote by U. It is also 

convenient to introduce the concept of the empty 

or null set, that is, is a set which contains no 

elements. This set, denoted 𝛷 is considered finite 

and a subset of every other set. Thus, for any set 

A,𝛷⊂A⊂U. 

 



• Empty Set 
It is possible to conceive a set with  

       no elements at all. Such a set is variously                   

 known as an empty set 

.  

• Subsets, Supersets 
             A set A is a subset of a set B or, equivalently, 

B is a super set of A, written  

                             A⊂B or B⊃A 

iff each elements in A also belongs to B; that is, if x 

∈ A such that x ∉ B. 

 

• Proper Subset 
             If S⊂T but S≠T, then we say that S is a 

proper subset of T. 

 

• Power Set 
             If S is a set then the set of all subset of S is 

called the power set of S and will be denoted by 

P(S). 

 



• Pairwise Disjoint 
             If A, B are two sets, we say that A is disjoin 

from B if A ∩ B is a empty set. Otherwise we say 

that A intersects B or that A and B intersects. A 

family Ƭ of set is said to be pairwise disjoint if 

every two distinct members of it are mutually 

disjoint. 

 

• Cartesian Product 
              Let A, B be any sets. Then their Cartesian 

product is defined to be the set {(x, y): x ∈ A, y ∊ 

B}. It is denoted by A × B. 

 

• Factor set 
               The set whose Cartesian product is formed 

are called factor set or the factors. 

 

• Composition 
               If f: X→Y, g: Y→Z are functions, their 

composition or composite is denoted g ○ f and is 

defined to be the function from X to Z given by g ○ 

f(x)= g(f(x)) for x∈ X. 

 



• Constant Functions 
                The simplest functions are the so called 

constant functions. 

 

• Injection, Surjection& Bijection. 
                 A function f: X→Y is said to be injective if 
for all x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2.  
                  A function X→Y is said to be surjective if 
for each y ∈ Y there is some x∈ X such that f(x)=y. 
                  A function which is both injective and 
surjective is called a bijective function or a 
bijection. A bijection of a set onto itself is called a 
permutation of that set. 
 

• Denumerable 
                  A set X is finite if either X=∅ or there 
exists a bijection f: {1, 2 ,………, n}→X for some 
positive integer n. Otherwise it is infinite. It is 
denumerable if there exists a bijection f: N→X 
where N is the set of all positive integers. A set 
which is either finite or denumerable is said to be 
countable, otherwise it is uncountable. 
 

• Equipollent 



                   Two sets X and Y are said to be 
equipollent to each other if there exist a bijection 
f: X→Y. It is easy to show that if X, Y are 
equipollent and Y, Z are equipollent then X, Z are 
equipollent. 

 

SECTION-1.2 

                         SETS WITH ADDITIONAL 

                                     STRUCTURE 

• Binary Relation 
                    If S is a set, a binary relation on S is 
defined simply as a subset of S×S. 
 

• Reflexive, Symmetric & Transitive 
                    A relation R on asset S is said to be 
reflexive if for all a ∈ S, aRa. 
                    It is symmetric if for all a, b ∈ S, aRb 
implies bRa. 
                     It is transitive if for all a, b, c ∈S, aRb 
and bRc implies aRc. It is antisymmetric if for all a, 
b ∈S, aRb and bRa implies a=b. 
 

• Equivalence Relation 



                      A relation is said to be an equivalence 
relation if it is reflexive, symmetric and transitive. 
If R is an equivalence relation on S and x ∈ S then 
R[x] is called the equivalence class under R or R- 
equivalence class containing x. 
 

• Partial Order 
                      A relation which is reflexive, transitive 
and antisymmetric is called a partial order. 
 

• Order Preserving 
                      If (S, ≤1) and (T, ≤2) are two partially 
ordered sets and f: S→ T is a function then f is said 
to be order preserving. 
 

• Order Isomorphism 
                       I f is a bijection and f as well as its 
inverse f-1 are both order preserving then f is 
called an order isomorphism. 
 

• Bounded Above and Bounded Below 
                       An element x ∈ S is said to be an 
upperbound for A if for all a ∈ A, a≤ x. A set which 
has at least one upperbound is said to be bounded 
above. The terms ‘lower bound’ and ‘bounded 
below’ are defined similarly. A set which is both 



bounded above and bounded below is said to b 
bounded. 
 

• Supremum and Infimum 
                        The least element, if any, of the set of 
all upper bounds of asset A is called the least 
upper bound of A and is denoted by sup(A) or by 
sup A. 
                         The concept of the greatest lower 
bound of a set A is defined analogously and is 
denoted by inf (A) or by inf A. 
 

• Ring 
                          (R, +) is an abelian group and • is 
another binary operation on R which is associative 
and distributive over + then the triple (R, +, •) is 
called a ring. 
 

• Open set 
                      Let X be a metric spaces with 
metric d. If x0 is a point of X and r is a 
positive real number open sphere Sr(x0) 
with centre x0 and radius ‘r’ is the subset 
of X is defined by Sr(x0)={x/d(x,x0)<r}. 
 



 

       

 

 

 

 

 

 

         

 

        

       CHAPTER 2 

MOTIVATION FOR TOPOLOGY  



SECTION- 2.1 

                             TOPOLOGY 

 The word ‘Topology’ is derived from two Greek 
words, topos meaning ‘surface’ and logos meaning 
‘discourse’ or ‘study’. Topology thus literally means 
the study of surfaces. Topology studies properties of 
spaces that are invariant under any continuous 
deformation. It is sometimes called “rubber-sheet 
geometry” because the objects can be stretched and 
contracted like rubber, but cannot be broken. For 
example, a square can be deformed into a circle 
without breaking it. Topology is a relatively new 
branch of mathematics; most of the research in 
topology has been done since 1900. The following are 
some of the subfields of topology. 

 

1. General Topolgy or Point Set 

Topology: General topology normally 

considers local properties of spaces, and is 
closely related to analysis. It generalizes the 
concept of continuity to define topological 
spaces, in which limits of sequences can be 
considered. Sometimes distance can be defined 
in these spaces, in which case they are called 



metric spaces; sometime no concept of 
distance makes sense. 

2. Combinatorial Topology: 
Combinatorial topology considers the global 
properties of spaces, built up from a network of 
vertices, edges, and faces. This is the oldest 
branch of topology, and dates back to Euler. It 
has been shown that topologically equivalent 
spaces have the same numerical invariant, 
which we now call the Euler characteristic. 
This is the number (V-E+F), where V, E and F 
are the number of vertices, edges, and faces f 
an object. For example, a tetrahedron and a 
cube are topologically equivalent to a sphere, 
and any ‘”triangulation’” of a sphere will have 
an Euler characteristic of 2. 

3. Algebraic Topology: 
 Algebraic topology also considers the global 
properties of spaces, and uses algebraic objects 
such as groups and rings to answer topological 
questions. Algebraic topology converts a 
topological problem into an algebraic problem 
that is hopefully easier to solve. For an 
algebraic problem that is hopefully easier to 
solve. For example, a group called a homology 
group can be associated to each space, and the 



torus and the Klein bottle can be distinguished 
from each other because they have different 
homology groups. 

 

     Algebraic topology sometimes uses the               
combinatorial structure of a space to calculate 
the various groups associated to that space. 

4. Differential Topology: Differential 

topology considers spaces with some king of 
smoothness associated to each point. In this 
case, the square and the circle would not be 
smoothly (or differentiably) equivalent to each 
other, Differential topology is useful for 
studying properties of vector fields, such as a 
magnetic or electric fields. 

 

Topology is used in many branches of 
mathematics, such as differentiable equations, 
dynamical systems, knot theory, and Riemann 
surfaces in complex analysis, it is also used in 
string theory in physics, and for describing the 

space-time structure of universe. 

 

SECTION-2.1 



                    GEOMETRY AND TOPOLOGY 

We remarked that topology, like geometry, deals with 
certain ‘object’, classifies them according to some 
equivalence relation and then studies those properties 
of the objects which are invariant under this 
classification. Geometry has local structure while 
topology only has global structure. Alternatively, 
geometry has continuous moduli, while topology has 
discrete moduli. The study of metric spaces is 
geometry, the study of topological spaces is topology. 

 

Definition: Let A, B be subsets of Euclidean spaces f: 
A→B a function and x0∈ A. We say f is continuous at x0 
if for each ∊> 0, there exists 𝛿 >0 such that 
d(f(x)),f(x0)<∊ for all x∈A for which d(x,x0)< 𝛿; where 
as usual, the same symbol d is used to denote the 
distance between point of A as well as B. Further, we 
say f is continuous, if it is continuous at all point of A.  

 

Definition: Let A, B be subsets of Euclidean spaces. A 
homeomorphism from A to B is a bijection f: A→B such 
that both f and its inverse are are continuous. When 
such f exists, A and B are said to be homeomorphic to 
each other.  



 

Moduli 

If a structure has a discrete moduli, the structure is 
said to be rigid, and its study is topology. If it has non-
trivial deformations, the structure is said to be flexible, 
and its study is geometry. 

                        The space of homotopy classes of maps is 
discrete, so studying maps up to homotopy is topology. 
Similarly, differential structures on a manifold is 
usually a discrete space. 

 

Symplectic Manifolds 

Symplectic manifolds are a boundary case, and parts of 
their study are called symplectic topology and 
sympletic geometry. 

By Darboux’s theorem, a symplectic manifolds has no 
local structure, which suggests that their study be 
called  topology. 

The space of symplectic structures on a manifolds 
form a continuous moduli, which suggests that their 

study be called geometry. 

 



               
 

 

 
 
 

             
 

 

             CHAPTER 3 
      TOPOLOGICAL SPACES 
SECTION-3.1 

                     TOPOLOGICAL SPACES 



 

Let X be non-empty set. A class Ƭ of subsets of X is a 
topology on X iff Ƭ satisfies the following axioms. 

[O1]  X and ∅ belong to Ƭ. 

[O2] The union of any number of sets in Ƭ belongs to Ƭ. 

[O3]  The intersection of any two sets in Ƭ belongs to Ƭ. 

The members of Ƭ are then called Ƭ-open sets, or 
simply open sets, and X together with Ƭ, i.e. the pair ( 
X,Ƭ) is called a topological space. 

 

Definitions: 

1. Then u is a topology on R; it is called the usual 
topology on R. Similarly, the class. Similarly, the 
class u of all open sets in the plane R2 is a 
topology, and also called the usual topology on R2. 

2. Let D denote the class of all subsets of X. D 
satisfies the axioms for a topology on x. This 
topology is called the discrete topology; and X 
together with its discrete topology, i.e. the pair (X, 
D), is called a discrete topological spaces. 

3. As seen by axioms [O1], a topology on X must 
contain the sets X and ∅. The class g={X,∅}, 
consisting of X and ∅ alone, is itself a topology on 



X. It is called the indiscrete topology; and X 
together with its indiscrete topology, i.e. (X, g),  is 
called an indiscrete topological space. 

4. Let Ƭ denote the class of all subsets of X whose 
complements are finite together with the empty 
set ∅. This class Ƭ is also a topology on X. It is 
called the cofinite topology or the T1- topology on 
X. 

5. If G is an open set containing a point p ∈ X, 
then G is called an open neighborhood of p. Also, G 
without p, i.e. G⧵ {p}, is called a deleted open 

neighborhood of p. 
 

Open Ball 

Let x0∈ X and r be a positive real number. Then the 
open ball with centre x0 and radius r is defined to 
be the set {x∈ X: d(x, x0)< r}. It is denoted either 
by Br(x0) or by B(x0; r). It is called the open r-ball 
around x0. 

Proposition: Let {xn} be a sequence in a metric space 
(X; d). Then {xn} converges to y in X iff for every open 
set U containing y, there exists a positive integer N 
such that for every integer n≥N, xn∈U. 



              Let f: X→Y be a function where X, Y are 
metric spaces and let x0∈ X. then f is continuous at x0 
iff for every open set V in Y containing f(x0), there 
exists an open set U in x containing x0 such that 
f(U)⊂V. 

  

Theorem:  

Let (X, d) be a metric space. Then  

1. The empty set ∅ and the entire set x are 
open. 

2. The union of any family of open sets is open. 
3. The intersection of any finite number of 

open set is open. 

4. Given distinct point x, y∈ X there exist 
open sets U, V such that x∈ U, y∈ V and U∩ 
V=∅. 

Proof 

1 and 2 are trivial consequence of the definition of 
open sets. 

For 3 first consider the case of the intersection of two 
open sets say A1 and A2. Let x ∈ A1∩ A2. Then x∈ A1 and 
x∈ A2. Since A1 is open, there exists r1>0 such that 
B(x;r1)⊂A1. Similarly since A2 is open there exists r2>0 



such that B(x;r2)⊂A2. Now let r=min {r1,r2}. Then 
clearly B(x;r)⊂ B(x:r1)∩B(x:r2)⊂A1∩A2. Thus A1 ∩A2 is 
open. One can either generalize this argument or use 
induction to settle the general case. The exceptional 
case of the intersection of an empty family of open sets 
is already covered under 1. 

For 4 let x, y ∈ X and x≠ y. then d(x,y)>0. Choose r so 
that 0<r<d(x,y) ∕ 2 and let U= B(x,r), V= B(y, r). then 
clearly U, V are open sets containing x, y respectively. 
Also they are mutually disjoint, for if z ∈ U∩ V then 
d(x,z)<r and d(x,z)<r when d(x,y)<2r by triangle 
inequality, a contradiction. 

 

Examples: 

1. Let X= {a,b,c,d,e}. determine whether or not 
each of the following classes of subsets of X is a 
topology on X. 
i. Ƭ1= {X,∅, {a}, {a,b}, {a,c}} 

ii. Ƭ2= {X, ∅, {a,b,c}, {a,b,d}, {a,b,c,d}} 
iii. Ƭ3= {X, ∅, {a}, {a,b}, {a,c,d}, {a,b,c,d}} 

Solution: 

i. Ƭ1 is not a topology on X since {a,b}, {a,c}∈ Ƭ1 but 
{a,b}∪{a,c}= {a,b,c}∉ Ƭ1. 



ii. Ƭ2 is not a topology on X since {a,b,c}, {a,b,d} ∈ Ƭ2 
but {a,b,c}∩{a,b,d}= {a,b}∉ Ƭ2. 

iii. Ƭ3 is a topology on X since it satisfies the 
necessary axioms.  

 

2. Let Ƭ be a topology on asset X consisting of four 
sets, i.e. Ƭ= {X,∅,A,B} where A and B are non 
empty distinct proper subsets of X. What 
conditions must A and B satisfy? 

Solution: 

     Since A∩B must also belong to Ƭ, there are two 
possibilities: 

Case 1. A∩B=∅ 

      Then A∪B cannot be A or B; hence A∪B= X. Thus 
the class {A,B} is a partition of X. 

Case 2. A∩B= A or A∩B= B 

       In either case, one of the sets is a subset of the 
other, and the member of Ƭ are totally ordered by 
inclusion: ∅⊂A⊂X or ∅⊂B⊂A⊂X. 

 

SECTION-3.2 

                       BASES AND SUB-BASES 



 

Base For A Topology 

    Let (X,Ƭ) be a topological space. A class B of open 
subsets of X, i.e. B⊂Ƭ, is a base for the topology Ƭ iff 

i. Every open set G ∈ Ƭ is the union of members of B. 
Equivalently, B⊂Ƭ is a base for Ƭ iff 

ii. For any point p belonging to an open set G, there 
exists B∈B with p∈B⊂G. 

 

Example: 

1. Let B be a base for a topology Ƭ on X and let B* be a 
class of open sets containing B, i.e. B⊂B*⊂ Ƭ. Show 
that B* is also a base for Ƭ. 

Solution: 

      Let G be an open subset of X. since B is a base for ( 
X, Ƭ), G is the union of members of B, i.e. G= ∪iBi where 
Bi ∈ B. But B⊂ B*; hence each Bi ∈B also belongs to B*. 
So G is the union of members of B*, and therefore B* is 
also a base for (X, Ƭ). 

 

2. Let B and B* be bases, respectively, for topologies Ƭ 
and Ƭ* on a set X. Suppose that each B∈ B is the union 



of members of B*. Show that Ƭ is coarser than Ƭ*, i.e. 
Ƭ⊂ Ƭ*. 

 

Solution: 

Let G be a Ƭ-open set. Then G is the union of members 
of B, i.e. G= ∪iBi where Bi∈B. But, by hypothesis, each 
Bi ∈B is the union of members of B*, and so G=∪iBi is 
also the union of members of B* which are Ƭ*-open 
sets. Hence G is also a Ƭ*-open set, and so Ƭ⊂ Ƭ*. 

                  

SUB-BASES 

       Let (X, Ƭ) be topological space. A class S of open 
subsets of X, i.e. S⊂ Ƭ, is a sub-base for the topology Ƭ 
on X iff finite intersections of members of S form a 
base for Ƭ.  

Theorem: 

Let X be a set, Ƭ a topology on X and S a family of 
subsets of X. Then S is a sub-base for Ƭ iff S generates 
Ƭ. 

 

Proof: 



Let B be the family of the finite intersections of 
members of S. Suppose first that S is a sub-base for Ƭ. 
We want to show that Ƭ is the smallest topology on X 
containing S. Now since S⊂B and B⊂ Ƭ we at least have 
that Ƭ contains S. Suppose U is on another topology on 
X such that S⊂U. We have to show that Ƭ⊂U. Now U is 
closed under finite intersections and S⊂U, U contains 
all finite intersection of members of S, i.e. B⊂U. But 
again since U is closed under arbitrary union and each 
members of Ƭ can be written as union of some 
members of B, it follows that Ƭ⊂U. 

Conversely suppose Ƭ is the smallest topology 
containing S. We have to show that S is a sub-base for 
Ƭ, i.e. that B is a base for Ƭ. Clearly B⊂ Ƭ since Ƭ is 
closed under finite intersection and S⊂ Ƭ. Since B is 
closed under intersection, there is a topology U on X 
such that B is a base for u. Every member of U can be 
expressed as a union of a sub-family of B and so is in Ƭ 
since B⊂ Ƭ. This means U⊂ Ƭ and consequently U= Ƭ 
since Ƭ is the smallest topology containing S. Thus B is 
a base for Ƭ S is a base for Ƭ. 

 

Examples: 



1. Show that all intervals (a,1] and [0,b), where 
0<a,b<1, form a sub-base for the relative usual 
topology on the unit interval I=[0,1]. 

Solution: 

       Recall that the infinite open intervals (a,∞) and 
(-∞) form a sub-base for the usual topology on the 
real line R. The intersection of these infinite open 
intervals with I=[0,1] are the sets ∅,I,(a,1] and [0,b] 
which, by the preceding problem, form a sub-base 
for I=[0,1]. But we can exclude the empty set ∅ and 
the whole space I from any sub-base; so the 
intervals (a,1) and [0,b) form a sub-base for I. 

2. Show that if S is a sub-base for topologies Ƭ and 
Ƭ* on X, then Ƭ= Ƭ*. 

Solution: 

        Suppose G∈ Ƭ. Since S is a sub-base for Ƭ, G=∪I 

(S1∩…….∩Sn), where Sk∈ S. 

But S is also a sub-base for Ƭ* and so S⊂ Ƭ*; hence 
each Sk∈ Ƭ*. Since Ƭ* is a topology, S1∩…….∩ Sn ∈ Ƭ* 
and hence G∈ Ƭ*. Thus Ƭ⊂ Ƭ*. Similarly Ƭ*⊂ Ƭ, and 
so Ƭ= Ƭ*. 

 

SECTION-3.3 



          SUBSPACES, RELTIVE TOPOLOGIES 

Let A be a non empty subset of a topological space (X, 
Ƭ). The class ƬA of all intersections of A with Ƭ-open 
subsets of x is a topology on A; it is called the relative 
topology on A or the relativization of Ƭ to A, and the 
topological space (A, ƬA) is called a subspaces of (X, Ƭ). 
In other words, a subset H of A is a ƬA-open set, i.e. 
open relative to A, if and only if there exists a Ƭ-open 
subset G of X such that 

                              H=G∩A 

Example: 

1. Consider the following topology on X={a, b, c, d, 
e}: 
   Ƭ={X,∅,{a},{a,b},{a,c,d},{a,b,c,d},{a,b,e}} 

         List the members of the relative topology ƬA on 

                  A= {a, c, e}. 

Solution: 

ƬA= {A∩G: G∈ Ƭ}, so the members of  ƬA are: 

A∩ X=A       A∩{a}={a}      A∩{a,c,d}={a,c} 

A∩{a,b,e}={a,e}   A∩ ∅=∅   A∩{a,b}={a} 

A∩{a,b,c,d}={a,c} 



In other words, ƬA = {A,∅,{a},{a,c},{a,e}}. Observe that 
{a, c} is not open in X, but is relatively open in A, i.e. is 
ƬA-open. 

2. Let A be a Ƭ- open subser of  (X, Ƭ) and let 
A⊂Y⊂x. Show that A is also open relative to the 
relative topology on Y, i.e. A is a ƬY-open subset 
of Y. 

Solution: 

ƬY={Y∩G:G∈ Ƭ}. But A⊂Y and A∈ Ƭ; so A= Y∩A∈ ƬY.  

 

                

 
 

             CHAPTER 4 

          BASIC CONCEPTS 
 

Neighborhoods 



Let (X; Ƭ) be a topological space, x0∈X and N⊂X. Then 
N is said to be a neighborhood of x0 or x0 is said to be 
an interior point of N if there is an open set V such that 
x0 ∈V and V⊂N. 

Theorem: 

A subset of a topological space is  open iff it is a 
neighborhood of each of its points. 

Proof: 

Let X be a topological space and G⊂X. First suppose G 
is open. Then evidently G is a neighborhood of each of 
its points. Conversely suppose G is a neighborhood of 
each of its points. Then for each x ∈ G, there is an open 
set Vx such that x∈ Vx and Vx⊂ G.  Since each VX is open 
so is G. 

Trivially if a neighborhood of a point x then so is any 
superset of N. It is also easy to show that the 
intersection of any two neighborhoods of a point is a 

again a neighborhood of that point. 

 

Interior 

Let (X, Ƭ) be a space and A⊂X. Then the interior of A is 
defined to be the set of all interior points of A, i.e. the 



set {x∈ A: A is a neighborhood of x}. It is denoted by A0 
or int(A). 

Example: 

Consider the following topology on X= {a, b, c, d, e }: 

Ƭ={X,∅,{a},{a,b},{a,c,d},{a,b,c,d},{a,b,e}} 

Find the interior point of the subset A={a,b,c} of X. 

Solution: 

The point a and b are interior point of A since a, b ∈ {a, 
b} ⊂ A= {a, b, c}, where {a,b} is an open set, i.e. since 
each belongs to an open set contained in A. Note that c 
is not an interior point of a since c does not belong to 
any open set contained in A. Hence int(a)= {a,b} is the 
interior of A. 

 

Accumulation Points 

Let A be a subset of a topological space X and y∈ X. 
Then y is said to be an accumulation point of A if every 
open set containing y contains at least one point of A 
other than y.   

 

Derived set 



Let A be a subset of a space X. Then the derived set of 
A, denoted by A´, is the set of all accumulation points 
of A in X. 

Theorem: 

For a subset A of a space X, Ā= A∪A´. 

Proof: 

First we claim that A∪ A´ is closed or that X-(A∪A’) is 
open. We do so by showing that X-(A∪A’) is a 
neighborhood of each of  its points. Let y ∈X-(A∪ 𝐴′). 
Then since y is not a point of accumulation of A there 
exists and open set V containing y such that V contains 
no point of A except possibly y. But y ∉ A, so we have 
A∩V=∅. We claim A’∩V is also empty. For, let z∈ A’∩V. 
Then V is an open set containing z which is an 
accumulation point of A. So V∩A is nonempty, a 
contradiction. So A’∩V=∅ and hence V⊂X-(A∪A’). This 
proves that A∪A´ is closed and since it obviously 
contains A, it also contains Ā; i.e. Ā⊂A∪A´. 

For the other way inclusion, A∪A´⊂Ā, it suffices to 
show that A´⊂Ā since we already have A⊂Ā. So let y∈ 
A´. If y ∉ Ā then y ∈ X-Ā which is an open set since Ā is 
always a closed set. But y is an accumulation point of 
A. So (X-A)∩A≠ ∅ which is a contradiction since X-
Ā⊂X-A. So y ∈ Ā. Hence the proof. 



 

               

 

             
 

 

 

 
            CONCLUSION 
 

Topology is an area of Mathematics concerned with 
the properties of space that are preserved under 
continuous deformations including stretching and 
bending, but not tearing. By the middle of the 20th 
century, topology had become a major branch of 
mathematics. 



Topology as a branch of mathematics can be formally 
defined as the study of qualitative properties of certain 
objects that are invariant under a certain kind of 
equivalence and it s the study of those properties of 
geometric configurations which remain when these 
configurations are subjected to one-to-one 
bicontinuous transformations or homeomorphisms. 
Topology operates with more general concepts than 
analysis. Differential properties of a given 
transformation are nonessential for topology but 
bicontinuity is essential. As a consequence, topology is 
often suitable for the solution of problems to which 
analysis cannot give the answer. 

Topology is used in several areas such as quantum 
field theory, image processing, molecular biology and 
cosmology and can also be used to describe the overall 
shape of the universe. The various possible positions 
of a robot can be described by a manifold called 
configuration space. In the area of motion planning 
one finds paths between two points in configuration 
space. 

General topology is important in many field of applied 
science as well as branches of mathematics. In reality 
it is used in data mining, computational topology for 
geometric design and molecular design, computer-



aided design, digital topology, information systems, 
particle physics and quantum physics etc. 

The notations of sets and functions in topological 
spaces, ideal topological spaces and ideal minimal 
spaces are extensively developed and used in many 
engineering problems, information systems, particle 
physics, computational topology and mathematical 
sciences. 

By researching generalizations of closed sets in 
various fields in general topology, some new 
separation axioms have been founded and they turn 
out to be useful in the study of digital topology. 
Therefore, all functions defined in this thesis will have 
many possibilities of applications in digital topology 
and computer graphics. 
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