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                         ABSTRACT 

 

 

Modern Cryptography relies heavily on concepts from 

mathematics. In this project we will be discussing several 

cryptographic ciphers and discovering the mathematical 

applications which can be found by exploring them. We 

begin with a review of the background material which will be 

needed before delving into the cryptographic ciphers. This 

project lends itself to be accessible to a person interested in 

learning about mathematics in cryptography on their own. 
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INTRODUCTION 

Cryptography is the science of using mathematics to 

encrypt and decrypt data. In the language of 

cryptography, where codes are called ciphers, the 

information to be concealed is called plaintext. After 

transformation to a secret form, a message is called 

ciphertext. The process of converting from plaintext to 

ciphertext is said to be encrypting, whereas the reverse 

process of changing from ciphertext back to plaintext is 

called decrypting. 

 Cryptography is an interdisciplinary subject, drawing 

from several fields especially mathematics. Nowadays 

cryptography makes extensive use of technical areas of 

mathematics, specifically those areas collectively known 

as discrete mathematics. Modern cryptography relies 

heavily on concepts from number theory. 

Cryptography makes secure web sites and electronic safe 

transmissions possible. Due to the large number of 

commercial transactions on the internet, cryptography is 

very key in ensuring security of transactions. Cryptography 

is also used in access control to regulate access such as in 

cable TV and satellite. Without cryptography, hackers 

could get into our e-mail, listen in on our phone 

conversations, or break into banks/brokerage accounts. 

Hence in general, cryptography is an important way of 

achieving confidentiality, data integrity, user 

authentication and non-repudiation. 



CHAPTER 1 

SOME TOPICS IN ELEMENTARY NUMBER 

THEORY 

In this section, we will be outlining several topics from 

number theory which we will need in order to explore the 

mathematics behind the cryptographic ciphers. 

1.1 Divisibility and the Euclidean algorithm 

Divisors and Divisibility: Given integers 𝑎 and b with  𝑎 ≠

 0, we say that 𝑎 divides b (or “b is divisible by 𝑎”) and     

we write 𝑎|b if there exists an integer d    such     that  

b= 𝑎d. In that case we call 𝑎 a divisor of b. By a proper 

divisor of b, we mean a positive divisor not equal to b itself, 

and by a non-trivial divisor of b, we mean a positive divisor 

not equal to 1 or b.  

Lemma 1.1.1. Suppose we have two integers 𝑎 and b with 

a common divisor d≠0. That is, d|𝑎 and d|𝑏 ,then we will 

have d|(𝑟𝑎 + 𝑠𝑏) for any integers r and s. 

Proof. Because d is a divisor of both 𝑎 and b, we can write 

𝑎 = 𝑑𝑗 and b= 𝑑𝑘 for some integers j and k. Then    

r𝑎+sb= 𝑟(dj)+s(dk)=d(rj+sk). Since (rj+sk) is an integer 

then it follows that d|(ra + sb). 

 

 



Proposition 1.1.1. Given two non- negative integers a and 

b, with a≠0, there exists a pair of unique integers q and r 

with 0≤ r < a such that b=aq+ r. We call q the quotient 

and r the remainder when b is divided by a. 

Greatest common divisor: Given two integers 𝑎 and b, 

not both zero, the greatest common divisor of a and b, 

denoted g.c.d.(𝑎,b) is the largest integer d dividing both 𝑎 

and b. If the greatest common divisor of a and b is 1, 

then we say that a and b are relatively prime. 

 The Euclidean Algorithm. 

Euclidean algorithm is useful for computing the g.c.d of 

two positive integers.  Suppose we have two positive 

integers 𝑎 and b, with  𝑎 >b.  The Euclidean algorithm 

works as follows. To find g.c.d.(𝑎,b), we first divide b 

into a and write down the quotient 𝑞1 and the remainder 

𝑟1: 𝑎 = 𝑞1𝑏 + 𝑟1. Next, we perform a second division 

with b playing the role of 𝑎 and 𝑟1 playing the role of b; 

b= 𝑞2𝑟1 + 𝑟2. Next, we divide 𝑟2 𝑖𝑛𝑡𝑜 𝑟1: 𝑟1 = 𝑞3𝑟2 +

𝑟3. We continue in this way, each time dividing the last 

remainder into the second-to-last remainder, obtaining a 

new quotient and remainder. When we finally obtain a 

remainder that divides the previous remainder, we are 

done: that final nonzero remainder is the greatest 

common divisor of 𝑎 and b. 

 

 



Example 1. Find g.c.d (1547,560). 

Solution: 1547= 2. 560 + 427 

                560 = 1. 427 + 133 

                427 = 3. 133 + 28 

                 133 = 4. 28 + 21 

                   28 = 1. 21 + 7 

Since 7/21, we are done: g.c.d(1547,560) = 7 

Definition: A prime number is an integer greater than 

one which has no positive divisors other than 1 and itself. 

A number is called composite if it has at least one non-

trivial divisor.      

Theorem 1.1.1–The Fundamental Theorem of                                                                                         

  Arithmetic 

Given any natural number n, n can be written uniquely 

(except for the order of factors) as a product of prime 

numbers. 

Example. 4200 = 23.3. 52.7 

Proposition 1.1.2. Let d= g.c.d(𝑎,b) where 𝑎 > 𝑏. Then 

there exist integers u and v such that d= u𝑎 +bv. In other 

words, the g.c.d of two numbers can be expressed as a 

linear combination of the numbers with integer 

coefficient. 

 



Example 2. From example 1, g.c.d(1547,560) =7. 

Express 7 as a linear combination of 1547 and 560. 

Solution: To express 7 as a linear combination of 1547 

and 560, we successively compute: 

               7= 28 – 1. 21 

                 = 28 – 1. (133 - 4. 28) 

                 = 5. 28 – 1. 133 

                 = 5. (427 – 3. 133) – 1. 133 

                 = 5. 427 – 16. 133 

                 = 5. 427 – 16. (560 – 1.427) 

                 = 21. 427 – 16. 560 

                 = 21. (1547 – 2. 560) – 16. 560 

                 = 21. 1547 – 58. 560 

Definition: We say that two integers 𝑎 and b are 

relatively prime (or “ 𝑎 is prime to b”) if g.c.d(𝑎, b) =1, 

i.e., if they have no common divisor greater than 1. 

1.2 Congruences 

Given three integers 𝑎, b and m, we say that “𝑎 is 

congruent to b modulo m” and write 𝑎 ≡ b mod m, if 

the difference 𝑎 − 𝑏 is divisible by m. The following 

properties are easily proved directly from the definition: 

1. (i) 𝑎 ≡ 𝑎 mod 𝑚 

(ii)𝑎 ≡ 𝑏 mod 𝑚  iff  𝑏 ≡ 𝑎 mod 𝑚  



(iii) If  𝑎 ≡ 𝑏 mod 𝑚 and  𝑏 ≡ 𝑐 mod 𝑚, then       

 𝑎 ≡ 𝑐 mod 𝑚. 

2. If 𝑎 ≡ b mod 𝑚 and 𝑐 ≡ 𝑑 mod 𝑚, then                

𝑎 ± 𝑐 ≡ 𝑏 ± 𝑑 mod 𝑚 and𝑎𝑐 ≡ 𝑏 𝑑 mod 𝑚. In other 

words, congruences with the same modulus can be 

added, subtracted or multiplied. 

3. If 𝑎 ≡ 𝑏 mod 𝑚, then 𝑎 ≡ 𝑏 mod 𝑑 for any divisor 

d|𝑚. 

4. If 𝑎 ≡ 𝑏 mod 𝑚, 𝑎 ≡ 𝑏 mod 𝑛, and m and n are 

relatively prime, then 𝑎 ≡ 𝑏 mod 𝑚𝑛. 
5.  In property 1,(i)-(iii) mean that the congruence 

modulo m is an equivalence relation. For fixed m, 

each equivalence class with respect to congruence 

modulo m has one and only one representative 

between 0 and m-1. The set of equivalence classes 

(called residue classes) will be denoted Z/mz. Any set 

of representatives for the residue classes is called a 

complete set of residues modulo m. 

Proposition 1.2.1. The elements of Z/mz which have 

multiplicative inverses are those which are relatively 

prime to m, i.e., the numbers 𝑎 for which there exists b 

with 𝑎𝑏 ≡ 1 mod 𝑚 are precisely those 𝑎 with 

g.c.d(𝑎, 𝑚) = 1. 

Proof: First, if d=g.c.d(𝑎,m) were greater than 1, we could 

not have 𝑎𝑏 ≡ 1 mod 𝑚 for any b, because that would imply 

that d divides 𝑎b-1 and hence divides 1. 



 Conversely, if g.c.d(𝑎, 𝑚)=1, then by property 5, we may 

suppose that 𝑎 < 𝑚. Then by Proposition 1.1.2, there exist 

integers u and v for which u𝑎+vm=1. Choosing b=u, we see 

that m|1-u𝑎=1-𝑎𝑏, as desired. 

Example. Find 160−1 mod 841, i.e., the inverse of 160 

modulo 841. 

Solution: By Euclidean algorithm, we have  

               841= 5. 160 + 41 

               160= 3. 41 + 37 

                 41= 1. 37 + 4 

                 37= 9. 4 + 1 

Hence, g.c.d(160,841)=1 and by Proposition 1.2.1, inverse 

of 160 modulo 841 exists. To find the inverse, we express 1 

as a linear combination of 160 and 841 as follows: 

               1= 37 – 9. 4 

                 = 37 – 9. (41 – 1. 37) 

                 = 10. 37 – 9. 41 

                 = 10. (160 – 3. 41) – 9. 41 

                 = 10. 160 – 39. 41 

                 = 10. 160 – 39. (841 – 5. 160) 

                 = 205. 160 – 39. 841 

Hence the answer is 205. 

 



Proposition 1.2.2. (Fermat’s Little Theorem). 

Let p be a prime. Any integer 𝑎 satisfies 𝑎𝑃 ≡ 𝑎 mod 𝑝, 

and any integer a not divisible by p satisfies  

𝑎𝑃−1 ≡ 1 mod 𝑝. 

Proof: First suppose that p∤ 𝑎. We first claim that the 

integers 0𝑎, 1𝑎, 2𝑎, 3𝑎, … (𝑝 − 1)𝑎 are a complete set of 

residues modulo p. To see this, we observe that otherwise 

two of them say i𝑎 and j𝑎, would have to be in the same 

residue class, i.e., 𝑖𝑎 ≡ 𝑗𝑎 mod 𝑝. But this would mean that 

p|(i - j)𝑎, and since 𝑎 is not divisible by p, we would have 

 P| (i – j). Since i and j are both less than p, the only way this 

can happen is if i=j. We conclude that the integers 

𝑎, 2𝑎, … , (𝑝 − 1)𝑎 are simply a rearrangement of 1, 2,…,p-1 

when considered modulo p. Thus, it follows that the product of 

the numbers in the first sequence is congruent modulo p to the 

product of the numbers in the second sequence, i.e., 

  𝑎𝑃−1(p-1)!≡ (𝑝 − 1)! 𝑚𝑜𝑑 𝑝. Thus, p|(p-1)!(𝑎𝑃−1 − 1). 

Since (p-1)! is not divisible by p, we have p|(𝑎𝑃−1 − 1), as 

required. Finally, if we multiply both sides of the 

congruence 𝑎𝑝−1 ≡ 1 mod 𝑝 by 𝑎, we get 𝑎𝑃 ≡ 𝑎 mod 𝑝 

when 𝑎 is not divisible by p. But if 𝑎 is divisible by p, then this 

congruence 𝑎𝑃 ≡ 𝑎 mod 𝑝 is trivial. This concludes the proof 

of the proposition. 

Proposition 1.2.3.(Chinese remainder theorem) 

Suppose that we want to solve a system of congruences to 

different moduli; x≡ 𝑎1 𝑚𝑜𝑑 𝑚1, 



                       x≡ 𝑎2𝑚𝑜𝑑 𝑚2, 

                        ….. 

                       x≡ 𝑎𝑟 mod 𝑚𝑟. 

Suppose that each pair of moduli is relatively prime; 

g.c.d(𝑚𝑖 , 𝑚𝑗)=1 for 𝑖 ≠ 𝑗. Then there exists a simultaneous 

solution x to all of the congruences, and any two solutions are 

congruent to one another modulo M=𝑚1𝑚2 … 𝑚𝑟. 

Proof: First, we prove uniqueness modulo M. Suppose that x’ 

and x’’ are two solutions. Let x= x’ – x’’. Then x must be 

congruent to 0 modulo each 𝑚𝑖 , and hence modulo M( by 

property 4 of congruences). We next show how to construct a 

solution x. 

Define 𝑀𝑖 =M∕ m 𝑖 to be the product of all of the moduli 

except for the 𝑖th. Clearly g.c.d(𝑚𝑖 , 𝑀𝑖)=1, and so there 

is an integer 𝑁𝑖 such that 𝑀𝑖𝑁𝑖 ≡ 1 mod 𝑚𝑖. Now set  

x= ∑  𝑎𝑖𝑀𝑖𝑁𝑖𝑖 . Then for each i, we see that terms in the 

sum other than the 𝑖th term are all divisible by 𝑚𝑖 , because 

𝑚𝑖| Mj whenever i ≠ j. thus for each i, we have  

x≡  𝑎𝑖𝑀𝑖𝑁𝑖 ≡ 𝑎𝑖 mod 𝑚𝑖 , as desired.  

Definition. The Euler 𝜙-function,𝜙(𝑛), is defined to be the 

number of positive integers less than or equal to n which are 

relatively prime to n.  

Proposition 1.2.4. the Euler 𝜙-function is multiplicative, 

meaning that 𝜙(𝑚𝑛) = 𝜙(𝑚) ⋅ 𝜙(𝑛) whenever 

g.c.d(m,n)=1. 



Proof: we must count the number of integers between 0 and 

mn-1 which have no common factor with mn. For each j in 

that range, let 𝑗1 be its least non-negative residue modulo m 

(i.e. 0≤ 𝑗1 <m and j≡ 𝑗1mod m) and let 𝑗2 be its least non-

negative residue modulo n (i.e. 0≤ 𝑗2 <n and j≡ 𝑗2mod n). 

It follows from the Chinese reminder theorem that for each 

pair 𝑗1, 𝑗2 there is one and only one j between 0 and mn -1 

for which j≡ 𝑗1mod m and j≡ 𝑗2mod n. j has no common 

factor with mn iff it has no common factor with m which is 

equivalent to 𝑗1 having no common factor with m and it has 

no common factor with n which is equivalent to 𝑗2 having 

no common factor with n. thus the j’s which we must count 

are in one-to-one correspondence with the pairs 𝑗1, 𝑗2 for 

which 0≤ 𝑗1 <m, g.c.d(𝑗1,m)=1; 0≤ 𝑗2 <n and  

g.c.d (𝑗2,n)=1. The number of possible 𝑗1′𝑠 is 𝜙(𝑚) and 

the number of possible 𝑗2’s is 𝜙(𝑛). So the number of pairs 

is 𝜙(𝑚) ⋅ 𝜙(𝑛). Hence the proof.  

Since every n can be written as a product of prime powers, 

each of which has no common factors with the others, and 

since we know the formula 𝜙(𝑃𝛼) = 𝑃𝛼 (1 −
1

𝑝
), we can 

use the above proposition to conclude that for  

n=𝑃1
𝛼1 𝑃2

𝛼2… 𝑃𝑟
𝛼𝑟, 

 𝜙(𝑛)=𝑃1
𝛼1 (1 −

1

𝑃1
) 𝑃2

𝛼2 (1 −
1

𝑃2
)…𝑃𝑟

𝛼𝑟 (1 −
1

𝑃𝑟
) 

         =n∏ (1 −
1

𝑝
)

𝑃∕𝑛
 



Proposition 1.2.5. If g.c.d(𝑎, 𝑚) = 1, then 

 𝑎𝜙(𝑚) ≡ 1 mod 𝑚. 

Proof: We first prove the proposition in the case when 

m is a prime power: m=𝑃𝛼.We use induction on 𝛼. The 

case 𝛼=1 is precisely Fermat’s little theorem. Suppose that 

𝛼 ≥2, and the formula holds for the (𝛼 − 1)th power of p. 

then 𝑎𝑃𝛼−1−𝑃𝛼−2
= 1 + 𝑃𝛼−1𝑏 for some integer b, by the 

induction assumption. Raising both sides of this equation to 

the p-th power and using the fact that the binomial 

coefficients in(1 + 𝑥)𝑃 are each divisible by p (except in the 

1 and 𝑥𝑃 at the ends), we see that 𝑎𝑃𝛼−𝑝𝛼−1
 is equal to 1 

plus a sum with each term divisible by 𝑃𝛼. That is, 𝑎𝜙(𝑃𝛼)-1 

is divisible by 𝑃𝛼, as desired. This proves the proposition 

for prime powers. 

Finally, by the multiplicativity of 𝜙, it is clear that 

 𝑎𝜙(𝑚) ≡ 1 mod𝑃𝛼. Since this is true for each 𝑃𝛼 which is 

the highest power of p dividing m, and since the different 

prime powers have no common factors with one another, it 

follows by property 4 of congruences that 

𝑎𝜙(𝑚) ≡ 1 mod 𝑚. 

Modular exponentiation by repeated squaring method 

A basic computation one often encounters in modular 

arithmetic is finding 𝑏𝑛 mod 𝑚 when both m and n are 

very large. There is a clever way of doing this that is 

much quicker than repeated multiplication of b by itself. 



In what follows, we shall assume that b< 𝑚, and that 

whenever we perform a multiplication, we then 

immediately reduce mod m (i.e., replace the product by 

its least non negative residue). In that way, we never 

encounter any integers greater than 𝑚2. We now 

describe the algorithm. 

Use 𝑎 to denote the partial product. When we are done, 

we will have 𝑎 equal to the least non negative residue of 

𝑏𝑛 mod 𝑚. We start out with 𝑎=1. 

Let 𝑛0, 𝑛1, … , 𝑛𝑘−1 denote the binary digits of n, i.e. 

n=𝑛0+2𝑛1+ 4𝑛2+…+2𝑘−1𝑛𝑘−1. Each 𝑛𝑗 is 0 or 1. If 

𝑛0=1, change 𝑎 to b. Then square b, and set 

 𝑏1 = 𝑏2 mod m (ie, 𝑏1is the least non negative residue 

of 𝑏2 mod m). If 𝑛1=1, multiply 𝑎 by 𝑏1 ,otherwise keep 

𝑎 unchanged. Next square 𝑏1, and set 

 𝑏2 ≡ 𝑏1
2 mod 𝑚.If 𝑛2=1,multiply 𝑎 by 𝑏2, otherwise 

keep 𝑎 unchanged. Continue in this way. You see that in 

the 𝑗th step, you have computed 𝑏𝑗 ≡ 𝑏2𝑗
mod m. If 𝑛𝑗=1, 

i.e., if 2𝑗 occurs in the binary expansion of n, then you 

include 𝑏𝑗 in the product for 𝑎. After (k-1)-st step you’ll 

have the desired 𝑎 ≡ 𝑏𝑛 mod 𝑚. 

 

 

 



Chapter 2 

CRYPTOGRAPHY 

2.1 Some Simple Cryptosystems 

Basic notions. Cryptography is the study of methods of 

sending messages in disguised form so that only the 

intended recipients can remove the disguise and read the 

message. The message we want to send is called the 

plaintext and the disguised message is called ciphertext. 

The plaintext and ciphertext are written in some 

alphabet(usually, but not always, they are written in the 

same alphabet) consisting of a certain number N of 

letters. The term “letter” (or “character”) can refer not 

only to the familiar A-Z, but also to numerals, blanks, 

punctuation marks, or any other symbols that we allow 

ourselves to use when writing the messages(if we don’t 

include a blank, for example, then all of the words are 

run together, and the messages are harder to read). The 

process of converting a plaintext to a ciphertext is called 

enciphering or encryption, and the reverse process is 

called deciphering or decryption. 

The plaintext and ciphertext are broken up into ‘message 

units’. A message unit might be a single letter, a pair of 

letters(digraph), a triple of letters(trigraph) or a block of 

50 letters. An enciphering transformation is a function 

that takes any plaintext message unit and gives us a 

ciphertext message unit.  



In other words, it is a map f from the set P of all possible 

plaintext message units to the set C of all possible 

ciphertext message units. We shall always assume that f is 

a 1-to-1 correspondence, i.e., given a ciphertext message 

unit, there is one and only one plaintext message unit for 

which it is the encryption. The deciphering 

transformation is the map 𝑓−1 which goes back and 

recovers the plaintext from the ciphertext. We can 

represent the situation schematically by the diagram 

𝑃 →
𝑓

𝐶 →
𝑓−1

𝑃 

Any such set-up is called a ‘cryptosystem’. 

The first step in inventing a cryptosystem is to “label” all 

possible plaintext message units and all possible 

ciphertext message units by means of mathematical 

objects from which functions can be easily constructed. 

These objects are often simply the integers in some 

range. For example, if our plaintext and ciphertext 

message units are single letters from the 26-letter 

alphabet A-Z, then we can label the letters using the 

integers 0,1, 2, …,25, which we call their “numerical 

equivalents”. Thus, in place of A we write 0, in place of S 

we write 18, in place of X we write 23, and so on. As 

another example, if our message units are digraphs (i.e. 

pair of letters) in the 27-letter alphabet consisting of A-Z 

and a blank, we might first let the blank have numerical 

equivalent 26(one beyond Z), and then label the digraph 



whose two letters correspond to x , y ∈ {0,1,2, … ,26} by 

the integer 27x + y ∈ {0,1, … ,728}. 

Thus, we view the individual letters as digits to the base 27 

and we view the digraph as a 2-digit integer to that base. For 

example, the digraph “NO” corresponds to the integer 27. 

13 + 14=365. Analogously, if we were using trigraphs as our 

message units, we could label them by integers  

729x +27y + z∈ {0,1, … ,19682}. In general, we can label 

blocks of k letters in an N-letter alphabet by integers 

between 0 and 𝑁𝑘 − 1 by regarding each such block as a k-

digit integer to the base N. 

In some situations, one might want to label message units 

using other mathematical objects besides integers-for 

example, vectors or points on some curve. But we shall only 

consider integers throughout this section. Let us start with 

the case when we take a message unit (of plaintext or 

ciphertext) to be a single letter in an N-letter alphabet 

labeled by the integers   0, 1, 2, …,N-1. Then by definition, 

an enciphering transformation is a rearrangement of these 

N integers. 

2.1.2 Shift Transformation 

Suppose we are using the 26-letter alphabet A-Z with numerical 

equivalents 0-25. Let the letter P∈ {0,1,2, … ,25} stand for a 

plaintext message unit. Define a function f from the set 

{0,1,2, … ,25} to itself by the rule, f(P)={
𝑃 + 3, 𝑖𝑓 𝑥 < 23
𝑃 − 3, 𝑖𝑓 𝑥 ≥ 23

 



In other words, f simply adds 3 modulo 26: f(P)≡P+3 mod 26. 

Thus, with this system, to encipher the word “YES” we first 

convert to numbers: 24 4 18, then add 3 modulo 26:1 7 21, 

then translate back to letters: “BHV”. To decipher a message, 

one subtracts 3 modulo 26. For example, the ciphertext “ZKB” 

yields the plaintext “WHY”. This cryptosystem was apparently 

used in ancient Rome by Julius Caesar, who supposedly 

invented it himself. 

Example given above can be generalized as follows. Suppose 

we are using an N-letter alphabet with numerical equivalents   

0, 1, 2, …, N-1. Let b be a fixed integer. By a shift 

transformation we mean the enciphering function f defined by 

the rule C= F(p)≡P+b mod N. Julius Caesar’s cryptosystem was 

the case N=26, b=3. To decipher a ciphertext message unit  

C∈ {0,1,2, … , 𝑁 − 1}, we simply compute  

P=𝑓−1(𝐶) ≡C– b mod N. 

2.1.3 Cryptanalysis 

Now suppose that you are not privy to the enciphering and 

deciphering information, but you would nevertheless like to be 

able to read the coded messages. This is called breaking the 

code, and the science of breaking codes is called cryptanalysis. 

In order to break a cryptosystem, one needs two types of 

information. The first is the general nature (the structure) of the 

system. For example, suppose we know that the cryptosystem 

uses a shift transformation on single letters of the 26-letter 

alphabet A-Z with numerical equivalents 0-25 respectively. The 

second type of information is knowledge of a specific choice of 

certain parameters connected with the given type of  



cryptosystem. In our example, the second type of information 

one needs to know is the choice of the shift parameter b. Once 

one has that information, one can encipher and decipher by 

the formulas C≡P+b mod N and P≡C– b mod N. 

We shall always assume that the general structural 

information is already known. In practice, users of 

cryptography often have equipment for enciphering and 

deciphering which is constructed to implement only one 

type of cryptosystem. Over a period of time the information 

about what type of system they are using might leak out. To 

increase their security, therefore, they frequently change the 

choice of parameters used with the system. For example, 

suppose that two users of the shift cryptosystem are able to 

meet once a year. At that time, they agree on a list of 52 

choices of the parameter b, one for each week of the 

coming year. The parameter b (more complicated 

cryptosystems usually have several parameters) is called a 

key, or more precisely, the enciphering key. 

Example. So suppose that we intercept the message 

“FQOCUDEM”, which we know was enciphered using a 

shift transformation on single letters of the 26-letter 

alphabet. It remains for us to find the b. One way to do this 

is by frequency analysis. This works as follows. Suppose that 

we have already intercepted a long string of ciphertext, say 

several hundred letters. We know that “E” is the most 

frequently occurring letter in the English language. So it is 

reasonable to assume that the most frequently occurring 

letter in the ciphertext is the encryption of E. Suppose that 

we find that “U” is the most frequently occurring character 



in the ciphertext. That means that the shift takes “E”=4 to 

“U”=20, i.e., 20≡4 + b mod 26, so that b=16. To decipher 

the message, then, it remains for us to subtract 16 (working 

modulo 26) from the numerical equivalent of 

“FQOCUDEM”: 

“FQOCUDEM” = 5 16 14 2 20 3 4 12 ⟼ 

                                                            15 0 24 12 4 13 14 22 

                                                         = “PAYMENOW”. 

2.1.4 Affine Transformations 

In the case of a shift encryption of single letters of a 26-letter 

alphabet, it is not even necessary to have a long string of 

ciphertext to find the most frequently occurring letter. After 

all, there are only 26 possibilities for b, and one can simply 

run through all of them. Most likely, only one will give a 

message that makes any sense, and that b is the enciphering 

key. 

Thus, this type of cryptosystem is too simple to be much 

good. It is too easy to break. An improvement is to use a 

more general type of transformation of Z/NZ, called an 

affine map: C≡ 𝑎P + b mod N, where 𝑎 and b are fixed 

integers (together they form the enciphering key). For 

example, working again in the 26-letter alphabet, if we want 

to encipher our message “PAYMENOW” using the affine 

transformation with enciphering key 𝑎=7, b=12, we obtain: 

15 0 24 12 4 13 14 22⟼ 13 12 24 18 14 25 6 10 

                                        = “NMYSOZGK”. 



To decipher a message that was enciphered by means of the 

affine map C≡ 𝑎P + b mod N, one simply solves for P in 

terms of C, obtaining P≡ 𝑎′𝐶 + 𝑏′ mod N, where 𝑎′ is the 

inverse of 𝑎 modulo N and 𝑏′ is equal to - 𝑎−1𝑏. Note that 

this works only if g.c.d( 𝑎,N)=1; otherwise we cannot solve 

for P in terms of C. If g.c.d( 𝑎,N)>1, then it is easy to see 

that more than one plaintext letter will give the same 

ciphertext, so that we cannot uniquely recover the plaintext 

from the ciphertext. For example, if we were to encipher 

the message “PAYBACK” by means of the affine map 

C≡ 𝑎P + b mod N where 𝑎=10, b=12, again in the 26-letter 

alphabet. Here g.c.d(( 𝑎,N)= 2 >1 and we observe that the 

plaintext units “P” and “C” corresponds to ciphertext unit 

“G”. By definition, that is not an enciphering 

transformation: we always require that the map be 1-to-1, 

i.e., that the plaintext be uniquely determined from the 

ciphertext. To summarize, an affine cryptosystem in an N-

letter alphabet with parameters 𝑎 ∈ (Z/NZ)∗and  

b∈ (Z/NZ) consists of the rules:                                                                                                       

C≡ 𝑎P + b mod N, P≡ 𝑎′𝐶 + 𝑏′ mod N, 

Where 𝑎′=𝑎−1 in (Z/NZ)∗ , 𝑏′= - 𝑎−1𝑏. 

As a special case of the affine cryptosystems we can set 𝑎=1, 

thereby obtaining the shift transformations. Another special 

case is when b=0: P≡ 𝑎C mod N, C≡ 𝑎−1P mod N. The 

case b=0 is called a linear transformation, meaning that the 

map takes a sum to a sum, i.e., if 𝐶1 is the encryption of 𝑃1 



and 𝐶2 is the encryption of 𝑃2, then 𝐶1+𝐶2 is the encryption 

of 𝑃1+𝑃2 (where, of course, we are adding modulo N). 

Now suppose that we know that an intercepted message was 

enciphered using an affine map of single letters in an N-

letter alphabet. We would like to determine the enciphering 

key 𝑎, b so that we can read the message. We need to know 

two bits of information to do this. 

Example 1. Still working in our 26-letter alphabet, suppose 

that we know the most frequently occurring letter of 

ciphertext is “K”, and the second most frequently occurring 

letter is “D”. It is reasonable to assume that these are the 

encryptions of “E” and “T”, respectively, which are the two 

most frequently occurring letters in the English language. 

Thus, replacing the letters by their numerical equivalents 

and substituting for P and C in the deciphering formula, we 

obtain:        

                    10𝑎′ + 𝑏′ ≡ 4 mod 26   

                    3𝑎′ + 𝑏′ ≡ 19 mod 26. 

We have two congruences with two unknowns, 𝑎′ and 𝑏′. The 

quickest way to solve is to subtract the two congruences to 

eliminate 𝑏′. We obtain 7𝑎′ ≡ 11 mod 26, and                      

𝑎′ ≡ 7−111 ≡ 9 mod 26. Finally, we obtain 𝑏′ by 

substituting this value for 𝑎′ in one of the congruences:   

𝑏′ ≡ 4 − 10𝑎′ ≡ 18 mod 26. So, messages can be 

deciphered by means of the formula P≡ 9C + 18 mod 26. 

 

 



Example 2. You are trying to cryptanalyze an affine 

enciphering transformation of single-letter message units in 

a 37-letter alphabet. This alphabet includes the numerals   

0-9, which are labeled by themselves (i.e., by the integers  

0-9). The letters A-Z have numerical equivalents 10-35, 

respectively, and blank=36(indicated by an “_” for 

understanding). You intercept the ciphertext  

“OH7F86BB46R3627O266BB9” (here the O’s are the 

letter “oh”, not the numeral zero). You know that the 

plaintext ends with signature “007” (zero zero seven). What 

is the message? 

From the given information, we know that “B” is the 

encryption for “0” (zero), and “9” is the encryption for “7”. 

Thus, replacing the letters by their numerical equivalents 

and substituting for P and C in the deciphering formula, we 

obtain: 

                   0 ≡ 11𝑎′ + 𝑏′ mod 37 

                  7 ≡ 9 𝑎′ + 𝑏′𝑚𝑜𝑑 37 

Subtracting the two congruences to eliminate 𝑏′, we obtain: 

2𝑎′ ≡ −7 mod 37, and 𝑎′ ≡ (−7)2−1 ≡ 15 mod 37. 

Finally, we obtain 𝑏′ by substituting this value for 𝑎′ in one 

of the congruences: 𝑏′ ≡ 20 mod 37. Now, we can decipher 

the message by the formula P≡ 15C + 20 mod 26, which 

reads as follows: “AGENT_006_IS_DEAD__007.   

 



2.1.5 Digraph Transformations 

We now suppose that our plaintext and ciphertext message 

units are two-letter blocks, called digraphs. For example, if 

our plaintext is “HELP”, as a digraph it is represented  

“HE LP”. This means that the plaintext is split up into two-

letter segments. If the entire plaintext has an odd number of 

letters, then in order to obtain a whole number of digraphs 

we add on an extra letter at the end; we choose a letter 

which is not likely to cause confusion, such as a blank if our 

alphabet contains a blank, or else “X” or “Q” if we are using 

just the 26-letter alphabet. 

Each digraph is then assigned a numerical equivalent. The 

simplest way to do this is to take xN+y, where x is the 

numerical equivalent of first letter in the digraph, y is the 

numerical equivalent of the second letter in the digraph, 

and N is the number of letters in the alphabet. Equivalently, 

we think of a digraph as a 2-digit base-N integer. This gives a 

one-to-one correspondence between the set of all digraphs 

in the N-letter alphabet and the set of all non-negative 

integers less than 𝑁2. 

Next, we decide upon an enciphering transformation, i.e., a 

rearrangement of the integers {0,1,2,…, 𝑁2 − 1}. Among the 

simplest enciphering transformations are the affine ones, 

where we view this set of integers as Z/𝑁2𝑍 and define the 

encryption of P to be the nonnegative integer less than 𝑁2 

satisfying the congruence C≡ 𝑎P + b mod 𝑁2.Here, as 

before, 𝑎 must have no common factor with N(which 



means it has no common factor with 𝑁2), in order that we 

have an inverse transformation telling us how to decipher: 

P≡ 𝑎′𝐶 + 𝑏′ mod 𝑁2, where 𝑎′ ≡ 𝑎−1mod 𝑁2,            

𝑏′ ≡ - 𝑎−1𝑏 mod 𝑁2. We translate C into a two-letter block 

of ciphertext by writing it in the form C=𝑥′𝑁 + 𝑦′, and then 

looking up the letters with numerical equivalents 𝑥′ and 𝑦 ′. 

Example. Suppose we are working in the 26-letter alphabet 

and using the digraph enciphering transformation            

𝐶 ≡ 159𝑃 + 580 mod 676. Then the digraph “NO” has 

numerical equivalent 13. 26 + 14 = 352 and is taken to the 

ciphertext digraph 159. 352 + 580≡ 440 mod 676, which is 

“QY” (since 440=16. 26 + 24). The digraph “ON” has 

numerical equivalent 14. 26 + 13=377, and is taken to  

159. 377 + 580≡359= “NV”.  

 Notice that the digraphs change as a unit, and there is no 

relation between the encryption of one digraph and that of 

another one that has a letter in common with it or even 

consists of the same letter in the reverse order.  

To break a digraphic encryption system which uses an 

affine transformation C≡ 𝑎P + b mod 𝑁2, we need to know 

the ciphertext corresponding to two different plaintext 

message units. Since the message units are digraphs, a 

frequency analysis means counting which two letter-blocks 

occur most often in a long string of ciphertext, and 

comparing with the known frequency of digraphs in English 

language texts. For example, if we use the 26-letter alphabet, 



statistical analyses seem to show that “TH” and “HE” are 

the two most frequently occurring digraphs, in that order. 

Example. You know that your adversary is using a 

cryptosystem with a 27-letter alphabet, in which the letters 

A-Z have numerical equivalents 0-25, and blank=26. Each 

digraph then corresponds to an integer between 0 and 

728=272 − 1 according to the rule that, if the two letters 

have numerical equivalents x and y, then the digraph has 

numerical equivalent 27x + y, as explained earlier. Suppose 

that a study of a large sample of ciphertext reveals that the 

most frequently occurring digraphs are “ZA”, “IA”, and 

“IW”. Suppose that the most common digraphs in the 

English language are “E_” (i.e., E blank), “S_”, “_T”. You 

know that the cryptosystem uses an affine enciphering 

transformation modulo 729. Find the deciphering key, and 

read the message “NDXBHO”. Also find the enciphering 

key. 

Solution. We know that plaintexts are enciphered by means 

of the rule C≡ 𝑎P + b mod 729, and that ciphertexts can be 

deciphered by means of the rule P≡ 𝑎′𝐶 + 𝑏′ mod 729; 

here 𝑎, b form the enciphering key, and 𝑎′, 𝑏′ form the 

deciphering key. We first want to find 𝑎′ and 𝑏′. We know 

how three digraphs are deciphered, and, after we replace 

the digraphs by their numerical equivalents, this gives us the 

three congruences: 

                      675𝑎′ + 𝑏′ ≡ 134 mod 729 

                         216𝑎′ + 𝑏′ ≡ 512 mod 729 

                        238𝑎′ + 𝑏′ ≡ 721 mod 729. 



If we try to eliminate 𝑏′ by subtracting the first two 

congruences, we arrive at 459𝑎′ ≡ 351 mod 729, which 

does not have a unique solution 𝑎′ mod 729(there are 27 

solutions). We do better if we subtract the third congruence 

from the first, obtaining  437𝑎′ ≡ 142 mod 729. To solve 

this we must find the inverse of 437 modulo 729. By way of 

review of the Euclidean algorithm, lets go through that in 

detail: 

               729=437 + 292 

               437=292 + 145 

               292= 2. 145 + 2 

               145 = 72. 2 + 1 

And then      

                1=145 - 72. 2 

                  =145 – 72(292 – 2. 145) 

                  =145. 145 – 72. 292 

                  =145(437 – 292) – 72. 292 

                  =145. 437 – 217. 292 

                  =145. 437 – 217(729 – 437) 

                  ≡362. 437 mod 729. 

Thus, 𝑎′ ≡362. 142≡374 mod 729, and then  

 𝑏′ ≡134 – 675. 374 ≡647 mod 729. Now applying the 

deciphering transformation to the digraphs “ND”, “XB” 

and “HO” of our message-they correspond to the integers 



354, 622 and 203, respectively- we obtain the integers 365, 

724 and 24. Writing 365= 13. 27 + 14, 724=26. 27 + 22,  

24=0. 27 + 24, we put together the plaintext digraphs into 

the message “NO WAY”. Finally, to find the enciphering 

key we compute 𝑎 ≡ 𝑎′−1
≡ 374−1 ≡ 614 mod 729(again 

using the Euclidean algorithm) and b≡ -𝑎′−1
 𝑏′ 

                                                           ≡ - 614. 647≡47 mod 729. 

Remark. Although affine cryptosystems with digraphs (i.e. 

modulo 𝑁2) are better than the ones using single letters (i.e. 

modulo N), they also have drawbacks. Notice that the 

second letter of each ciphertext digraph depends only on 

the plaintext digraph. This is because that second letter 

depends on the mod- N value of C≡ 𝑎P + b mod 𝑁2, 

which depends only on P modulo N, i.e., only on the 

second letter of the plaintext digraph. Thus, one could 

obtain a lot of information (namely, 𝑎  and b modulo N) 

from a frequency analysis of the even-numbered letters of 

the ciphertext message. 

2.2 Some Examples of Secrecy Systems 

In this section a number of examples of ciphers is given. 

1. Simple Substitution Cipher 

In this cipher each letter of the message is replaced by 

a fixed substitute usually also a letter. Thus, the 

message, M= 𝑚1𝑚2𝑚3𝑚4 … , where 𝑚1, 𝑚2, 𝑚3,.. are 

the successive letters becomes: 

 E= 𝑒1𝑒2𝑒3𝑒4 … =  𝑓(𝑚1) 𝑓(𝑚2) 𝑓(𝑚3)𝑓(𝑚4)… 



Where the function  𝑓(m) is a function with an inverse. 

The key is a permutation of the alphabet (when the 

substitutes are letters). An example key is: 

  Plain alphabet: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

 

Cipher alphabet: 

PHQGIUMEAYLNOFDXJKRCVSTZWB. 

 

An example encryption using the above key: 

Plaintext:  

DEFEND THE EAST WALL OF THE CASTLE 

Ciphertext: 

GIUIFG CEI IPRC TPNN DU CEI QPRCNI. 

 

2. Transposition (Fixed Period d) 

The message is divided into groups of length d and a 

permutation applied to first group, the same 

permutation to the second group, etc. The permutation 

is the key and can be represented by a permutation of 

the first d integers. Thus, for d=5, we might have 2 3 15 

4 as the permutation. This means that:  

𝑚1𝑚2𝑚3𝑚4𝑚5𝑚6𝑚7𝑚8𝑚9𝑚10… 

becomes  𝑚2𝑚3𝑚1𝑚5𝑚4𝑚7𝑚8𝑚6𝑚10𝑚9… 

Sequential application of two or more transpositions will 

be called compound transposition. If the periods are 

𝑑1, 𝑑2, … , 𝑑𝑛  then the result is a transposition of period 

d, where d is the least common multiple of 

𝑑1, 𝑑2, … , 𝑑𝑛 . 



 

3. Vigenere Cipher 

The most famous example of a polyalphabetic cipher 

(In a polyalphabetic cipher, a plaintext has more than one 

ciphertext equivalent) was published by the French 

cryptographer Blaise de Vigenere (1523-1596) in his Traicte 

de Chiffres of 1586. 

To implement this system, the communicating parties agree 

on an easily remembered word or phrase. With the 

standard alphabet numbered from A=00 to Z=25, the digital 

equivalent of the keyword is repeated as many times as 

necessary beneath that of the plaintext message. The 

message is then enciphered by adding, modulo 26, each 

plaintext number to one immediately beneath it. The 

process may be illustrated with the keyword READY; 

whose numerical version is 17 04 00 03 24. Repetitions of 

this sequence are arranged below the numerical plaintext of 

the message 

           “ATTACK AT ONCE” 

to produce the array 

00 19 19 00 02 10       00 19      14 13 02 04 

17 04 00 03 24 17       04 00      03 24 17 04 

When the columns are added modulo 26, the plaintext 

message is encrypted as 

17 23 19 03 00 01       04 19      17 11 19 08 

or, converted to letters, “RXTDAB ET RLTI”. 



Notice that a given letter of plaintext is represented by 

different letters in the ciphertext. The double “T” in the 

word “ATTACK” no longer appears as a double letter 

when ciphered, while the ciphertext “R” first corresponds to 

“A” and then to “O” in the original message. 

In general, any sequence of n letters with numerical 

equivalents 𝑏1, 𝑏2, … , 𝑏𝑖 (00≤ 𝑏𝑖 ≤25) will serve as the 

keyword. The plaintext message is expressed as successive 

blocks 𝑃1𝑃2 … 𝑃𝑛 of n two-digit integers 𝑃𝑖, and then 

converted to ciphertext blocks 𝐶1𝐶2 … 𝐶𝑛 by means of the 

congruences 𝐶𝑖 ≡ 𝑃𝑖 + 𝑏𝑖 mod 26 , 1≤ i ≤ n. 

Decryption is carried out by using the relations 

𝑃𝑖 ≡  𝐶𝑖 - 𝑏𝑖 mod 26, 1≤ i ≤ n. 

4. Hills’s Cipher 

This cipher was devised in 1929 by Lester Hill, an assistant 

professor of mathematics at Hunter college. Hills’s 

approach is to divide the plaintext message into blocks of n 

letters (possibly filling out the last block by adding 

“dummy” letters such as X’s) and then to encrypt block by 

block using a system of n linear congruences in n variables. 

In its simplest form, when n=2, the procedure takes two 

successive letters and transforms their numerical 

equivalents 𝑃1𝑃2 into a block 𝐶1𝐶2 of ciphertext numbers 

via the pair of congruences 

                        𝐶1 ≡ 𝑎 𝑃1 + 𝑏𝑃2 mod 26 

                         𝐶2 ≡ 𝑐 𝑃1 + 𝑑𝑃2 mod 26 



To permit decipherment, the four coefficients 𝑎, b, c, d 

must be selected so g.c.d(𝑎d – bc, 26)=1. 

To illustrate Hills’s cipher, let us use the congruences 

                            𝐶1 ≡ 2 𝑃1 + 3𝑃2 mod 26 

                         𝐶2 ≡ 5 𝑃1 + 8𝑃2 mod 26 

To encrypt the message “BUY NOW”. The first block 

“BU” of letters is numerically equivalent to 01 20. This is 

replaced by 

      2(𝑂1) + 3(20) ≡ 62 ≡ 10 mod 26 

      5(𝑂1) + 8(20) ≡ 165 ≡ 9 mod 26 

Continuing two letters at a time, we find that the completed 

ciphertext is: 10 09 09     16 16 12   which can be 

expressed alphabetically as: “KJJ QQM”. 

Decipherment requires solving the original system of 

congruences for  𝑃1 and 𝑃2 in terms of 𝐶1 𝑎𝑛𝑑 𝐶2. The 

plaintext block  𝑃1𝑃2 can be recovered from ciphertext 

block 𝐶1𝐶2 by means of the congruence 

              𝑃1 ≡ 8𝐶1 - 3𝐶2 mod 26 

               𝑃2 ≡ -5𝐶1 + 2𝐶2 mod 26 

From block 10 09 of ciphertext, we calculate 

               𝑃1 ≡ 8(10) – 3(09) ≡ 53 ≡ 01 mod 26 

               𝑃2 ≡ -5 (10) + 2(09) ≡ -32≡ 20 mod 26 

Which is the same as the letter “BU”. The remaining 

plaintext can be restored in a similar manner. 



5. Autokey Cipher 

A Vigenere type system in which either the message itself or 

the resulting cryptogram is used for the “key” is called an 

autokey cipher. The encipherment is started with a “priming 

key” (which is the entire key in our sense) and continued with 

the message or cryptogram displaced by the length of the 

priming key as indicated below, where the priming key is 

“COMET”. The message used as key: 

Message:       SENDSUPPLIES… 

       Key:       COMETSENDSUP… 

Cryptogram: USZHLMTCOAYH… 

 

The cryptogram used as key: 

Message:       SENDSUPPLIES… 

       Key:      COMETUSZHLMT... 

Cryptogram: USZHLOHOSTSZ… 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

PUBLIC KEY 

 

3.1 The idea of Public Key Cryptography 

The term “cryptosystem” is more often used to refer to a whole 

family of 1-to-1 enciphering transformation f from a set P of all 

possible plaintext message units to a set C of all possible 

ciphertext message units. Each transformation corresponds to a 

choice of parameters. For example, for a fixed N-letter 

alphabet (with numerical equivalents also fixed once and for 

all), we might consider the affine cryptosystem which for 𝑎 ∈

(Z/NZ)∗and b∈ (Z/NZ) is the map P= Z/NZ to C= Z/NZ 

defined by 𝐶 ≡ 𝑎𝑃 + 𝑏 mod 𝑁. In this example, the sets P and 

C are fixed, but the enciphering transformation f depends on 

the choice of parameters 𝑎, b. The values of the parameters are 

called the enciphering key 𝑘𝐸. In our example, 𝑘𝐸 is the 

pair  (𝑎, b). 

In practice, we shall suppose that the algorithm is publicly 

known, i.e., the general procedure used to encipher cannot be 

kept secret. However, the keys can easily be changed 

periodically, and if one wants, kept secret. One also needs an 

algorithm and a key in order to decipher, i.e., compute 𝑓−1. The 

key is called the deciphering key 𝑘𝐷. In our example of the affine 

cryptosystem family, deciphering is also accomplished by an 

affine map, namely 𝑃 ≡ 𝑎−1𝑐 − 𝑎−1𝑏 mod N, and so the 

deciphering transformation uses the same algorithm as the 

enciphering transformation, except with a different key, namely, 

the pair (𝑎−1, −𝑎−1𝑏). 



We shall always suppose that the deciphering and enciphering 

algorithms are publicly known, and that it is the keys 𝑘𝐸 and   

𝑘𝐷 which can be concealed. 

By definition, a public key cryptosystem has the property that 

someone who knows only how to encipher cannot use the 

enciphering key to find the deciphering key without a 

prohibitively lengthy computation. In other words, the 

enciphering function f: P⟶C is easy to compute once the 

enciphering key 𝑘𝐸 is known, but it is very hard in practice to 

compute the inverse function 𝑓−1: C⟶P. That is, from the 

standpoint of realistic computability, the function f is not 

invertible (without some additional information- the 

deciphering key 𝑘𝐷). Such a function is called trapdoor 

function. That is, a trapdoor function is a function f which is 

easy to compute but whose inverse 𝑓−1 is hard to compute 

without having some additional auxiliary information beyond 

what is necessary to compute. 

There is a closely related concept of a one-way function. This is 

a function f which is easy to compute but for which 𝑓−1 is hard 

to compute and cannot be made easy to compute even by 

acquiring some additional information. While the notion of a 

trapdoor function apparently appeared for the first time in 

1978 along with the invention of RSA public key cryptosystem, 

the notion of a one-way function is somewhat older. 

With a public key system, it is possible for two parties to initiate 

secret communications without ever having any prior contact, 

without having established any prior trust for one another, 

without exchanging any preliminary information. All of the 

information necessary to send an enciphered message is public. 



3.2 Classical versus Public key         

By a classical cryptosystem (also called a private key 

cryptosystem or a symmetrical cryptosystem), we mean a 

cryptosystem in which, once the enciphering information is 

known, the deciphering transformation can be implemented 

in approximately the same order of magnitude time as the 

enciphering transformation. All of the cryptosystems in 

Chapter 2 are classical. Occasionally, it takes a little longer 

for the deciphering-because one needs to apply the 

Euclidean algorithm to find an inverse modulo N or one 

must invert a matrix- nevertheless the additional time 

required is not prohibitive. However, in a private key cipher 

both the encryption key and decryption key must be kept 

secret from those who are not part of the communication at 

hand in order to ensure cipher’s security. Because of this 

encryption/decryption keys must be generated for pairs of 

people each time they wish to communicate. 

In contrast, public-key cryptosystem (also known as 

asymmetric cryptosystem) are developed in such a way that 

knowledge of the encryption key gives no information as to 

what the decryption key is. One advantage of public key 

cryptography is that, there is an especially easy way to 

identify oneself in such a way that no one could be simply 

pretending to be you. Let A(Alice) and B(Bob) be two users 

of the system let 𝑓𝐴 be the enciphering transformation with 

which any user of the system sends a message to Alice and 

let 𝑓𝐵 the same for Bob. For simply sitting, we shall assume 

that the set P of all possible plaintext message units and the 



set C of all possible ciphertext message units are equal, and 

are the same for all users. Let P be Alice’s “signature” 

(perhaps the time the message was sent etc.). It would not 

be enough for Alice to send Bob the encoded message 

𝑓𝐵(P), since everyone knows how to do that, so there would 

be no way of knowing that the signature was not forged. 

Rather, at the beginning (or end) of the message Alice 

transmits  𝑓𝐵 𝑓𝐴
−1(P). Then, when Bob deciphers the whole 

message, including this part, by applying 𝑓𝐵
−1 he finds that 

everything has become plaintext except for a small section 

of jibberish, which is 𝑓𝐴
−1(P). since Bob knows that the 

message is claimed to be from Alice, he applies  𝑓𝐴(which 

he knows, since Alice’s enciphering key is public) and 

obtains P. Since no one other than Alice could have applied 

the function 𝑓𝐴
−1 which is inverted by  𝑓𝐴, he knows that the 

message was from Alice. 

 

3.3  RSA 

One of the most well-known and widely used publicly 

cryptosystem is the RSA cryptosystem. It is named from the 

last names of the inventors Rivest, Shamir, and Adleman. 

The success of the so called “RSA” cryptosystem, which is 

one of the oldest and most popular public key cryptosystems 

is based on the tremendous difficulty of factoring.  

We now describe how RSA works. Each user first chooses 

two extremely large prime numbers p and q (say of about 100 

decimal digits each), and sets n=pq. 



Knowing the factorization of q, it is easy to compute  

𝜙(𝑛)=(p – 1)(q – 1)= n + 1 - p - q. Next, the user randomly 

chooses an integer e between 1 and 𝜙(𝑛) which is prime to 

𝜙(𝑛). Whenever we say “random” we mean that the number 

was chosen with the help of a random number generator, 

i.e.,, a computer program that generates a sequence of digits 

in a way that no one could duplicate or predict, and which is 

likely to have all of the statistical properties of a truly random 

sequence. In the RSA cryptosystem, we need a random 

number generator not only to choose e, but also to choose 

the large primes p and q. 

Thus, each user A chooses two primes 𝑝𝐴 and 𝑞𝐴 and a 

random number  𝑒𝐴 which has no common factor with  

(𝑝𝐴– 1)(𝑞𝐴 – 1). Next, A computes 𝑛𝐴= 𝑝𝐴 𝑞𝐴,        

𝜙( 𝑛𝐴)= 𝑛𝐴 + 1−   𝑝𝐴−𝑞𝐴, and also the multiplicative 

inverse of  𝑒𝐴 modulo 𝜙( 𝑛𝐴):  𝑑𝐴=𝑒𝐴
−1 mod 𝜙( 𝑛𝐴). She 

makes public the enciphering key 𝑘𝐸,𝐴= ( 𝑛𝐴,  𝑒𝐴) and 

conceals the deciphering key 𝑘𝐷,𝐴=( 𝑛𝐴,  𝑑𝐴). The 

enciphering transformation is the map from Z/ 𝑛𝐴Z to itself 

given by f(P)≡ 𝑃 𝑒𝐴 mod  𝑛𝐴. The deciphering 

transformation is the map from Z/ 𝑛𝐴Z to itself given 

by 𝑓−1(𝐶) ≡ 𝐶  𝑑𝐴 mod  𝑛𝐴. These two maps are inverse to 

one another, because of our choice of  𝑑𝐴. 

Namely, performing f followed by  𝑓−1 or  𝑓−1 followed by f 

means raising to the  𝑑𝐴𝑒𝑎th power. But because 𝑑𝐴𝑒𝑎 leaves 

a reminder of 1 when divided by 𝜙( 𝑛𝐴), this is the same as 

raising to the 1-st power. 



In practice, we would probably want to choose P and C 

uniformly throughout the system. For example, suppose we 

are working in an N-letter alphabet. Then let k< 𝑙 be suitably 

chosen positive integers such that for example,  𝑁𝑘 and 𝑁𝑙 

have approximately 200 decimal digits. We take as our 

plaintext message units all blocks of k-letters, which we regard 

as k- digit base N- integers, i.e., we assign them numerical 

equivalents between 0 and  𝑁𝑘 . We similarly take ciphertext 

message units to be blocks of l-letters in our N-letter alphabet. 

Then each user must choose his/her large primes  𝑝𝐴 and  

 𝑞𝐴 so that  𝑛𝐴= 𝑝𝐴 𝑞𝐴 satisfies 𝑁𝑘 <  𝑛𝐴 < 𝑁𝑙.Then any 

plaintext message unit, i.e., integer less than 𝑁𝑘,corresponds to 

an element in Z/ 𝑛𝐴Z and since  𝑛𝐴 < 𝑁𝑙, the image  

f(P) ∈ Z/ 𝑛𝐴Z can be uniquely written as an l-letter block. 

Example. For the benefit of simplicity in computation, we shall 

sacrifice realism and choose most of our examples so as to 

involve relatively small integers. Choose N=26, k= 3, l= 4. That 

is, the plaintext consists of trigraphs and the ciphertext consists 

of four graphs in the usual 26-letter alphabet. To send the 

message “YES” to a user A with the enciphering key  

( 𝑛𝐴,  𝑒𝐴)=(46927, 39423), we first find the numerical 

equivalent of “YES”, namely: 24.262+4.26+18=16346, and 

then compute 1634639423 mod 46927, which is  

21166=1. 263+5. 262+8.26+2= “BFIC”. The recipient A 

knows the deciphering key, ( 𝑛𝐴,  𝑑𝐴)=(46927,26767), and so 

computes 2116626767 mod 46927=16346= “YES”. 



Let us see how use A generate her keys. First, she multiplied 

the primes  𝑝𝐴=281 and  𝑞𝐴=167 to get  𝑛𝐴; then she chose 

 𝑒𝐴 at random [but subject to the condition that  

g.c.d( 𝑒𝐴,280) =g.c.d( 𝑒𝐴,166)=1]. Then she found 

 𝑑𝐴=𝑒𝐴
−1 mod 280.166. The numbers  𝑝𝐴,  𝑞𝐴 and  𝑑𝐴 remain 

secret.  

Clearly, the most time-consuming step is modular 

exponentiation, eg. 1634639423 mod 46927. But this can be 

done by repeated squaring method.  

Example. Suppose that a message is to be sent to an 

individual whose listed public key is (2701,47). The key was 

arrived at by selecting the two primes p=37 and q=73, which 

in turn led to the enciphering modulus n=37.73=2701 and 

𝜙(𝑛)=36.72=2592. Because g.c.d(47,2592)=1, the integer 

k=47 was taken as the enciphering exponent.  

The message to be encrypted and forwarded is “NO WAY 

TODAY”. It is first translated into a digital equivalent using 

the previously indicated letter substitutions  

M=13 14 26 22 00 24 26 19 14 3 00 24. 

This plaintext number is thereafter expressed as four-digit 

blocks: 1314 2622 0024 2619 1403 0024. The 

corresponding ciphertext numbers are obtained by raising 

each block to the 47
th
 power and reducing the results 

modulo 2701. In the first block, repeated squaring produces 

the value 131447 ≡1241 mod 2701. The completed 

encryption of the message is the list  



                 1241 1848 0873 1614 2081 0873. 

For the deciphering operation, the recipient employs the 

Euclidean algorithm to obtain the equation  

47.1103+2592(-20)=1, which is equivalent to  

47.1103≡1 mod 2592. Hence, j=1103 is the recovery 

exponent. It follows that 12411103 ≡1314 mod 2701 and so 

on. 

Remarks  

1. In choosing p and q, user A should take care to see that 

certain conditions hold. The most important are: that the 

two primes not be too close together, and p-1 and q-1 have 

a fairly small g.c.d and both have at least one large prime 

factor. 

2.  While discussing authentication in a previous section, we 

assumed for simplicity P=C. We have slightly more 

complicated set-up in RSA. Here is one way to avoid the 

problem of different  𝑛𝐴’s and different block sizes (k, the 

number of letters in a plaintext message unit, being less 

than l, the number of letters in a ciphertext message unit). 

Suppose that, Alice is sending her signature to Bob. She 

knows Bob’s enciphering key 𝑘𝐸,𝐵=( 𝑛𝐵, 𝑒𝐵) and her own 

deciphering key 𝑘𝐷,𝐴=( 𝑛𝐴, 𝑒𝐴). What she does is send 

  𝑓𝐵 𝑓𝐴
−1(P) is  𝑛𝐴 <  𝑛𝐵 or else 𝑓𝐴

−1 𝑓𝐵(P) if  𝑛𝐴 >  𝑛𝐵. 

That is, in the former case she takes the least positive 

residue of 𝑃 𝑑𝐴 modulo  𝑛𝐴 then regarding that number 

modulo  𝑛𝐵, she computes 𝑃 𝑒𝐴 modulo  𝑛𝐵 and then, 

working modulo  𝑛𝐴, she raises this to the  𝑑𝐴-th power. 



Clearly, Bob can verify the authenticity of the message in 

the first case by raising to the 𝑑𝐵-th power mod  𝑛𝐵 and 

then to the 𝑒𝐴-th power mod  𝑛𝐴; in the second case he 

does the operation in the reverse order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter4 

APPLICATIONS  
 

4.1 Cryptography in Everyday Life 
 

Authentication/Digital Signatures: 
Authentication is any process through which one proves and 

verifies certain information. Sometimes one may want to verify 

the origin of a document, the identity of the sender, the time 

and date a document was sent and/or signed, the identity of a 

computer or user, and so on. A digital signature is a 

cryptographic means through which many of these may be 

verified. The digital signature of a document is a piece of 

information based on both the document and the signer’s 

private key. It is typically created through the use of a hash 

function and a private signing function (algorithms that create 

encrypted characters containing specific information about a 

document and its private keys). 

Time Stamping: 
Time stamping is a technique that can certify that a certain 

electronic document or communication existed or was 

delivered at a certain time. Time stamping uses an encryption 

model called a blind signature scheme. Blind signature schemes 

allow the sender to get a message receipted by another party 

without revealing any information about the message to the 

other party. Possible applications include patent applications 

copyright archives and contracts. Time stamping is a critical 

application that will help make the transition to electronic legal 

documents possible. 

 

 



 Electronic Money: 

The definition of electronic money (also called electronic cash 

or digital cash) is a term that is still evolving. It includes 

transactions carried out electronically with a net transfer of 

funds from one party to another, which may be either debit or 

credit and can be either anonymous or identified. Encryption is 

used in electronic money schemes to protect conventional 

transaction data like account numbers and transaction amounts, 

digital signature or a credit card authorization and public –key 

encryption can provide confidentiality.  

Encryption/ Decryption in E-mail: 

Email encryption is a method of securing the content of emails 

from anyone outside of the email conversation looking to 

obtain a participant’s information. In its encrypted form, and 

email is no longer readable by a human. Only with your private 

email key can your emails be unlocked and decrypted back 

into the original message.  

There are various types of email encryption, but some of the 

most common encryption protocols are: 

Open PGP-a type PGP encryption that utilizes a decentralized, 

distributed trust model and integrates well with modern web 

email clients.  

S/MIME – a type of encryption that is built into most apple 

devices and utilizes a centralized   authority to pick the 

encryption algorithm and key size. 

Encryption in WhatsApp: 

WhatsApp uses the ‘signal’ protocol for encryption, which uses 

a combination of asymmetric and symmetric key cryptographic 



algorithms. The symmetric key algorithms ensure 

confidentiality and integrity whereas the asymmetric key 

algorithms help in achieving the other security goals namely 

authentication and non-repudiation. 

Conclusion 

Cryptography and network security are the key technologies to 

ensure the security of the information system. As we advance 

towards a society where automated information resources are 

increased, cryptography will continue to rise in importance as a 

security mechanism. In this project, we have aimed to identify 

some of the mathematical concepts from elementary number 

theory behind classical and public key cryptosystems. In the 

case of RSA, despite years of attempts, no one has been known 

to crack the algorithm. Such a resistance to attack makes RSA 

secure in practice. Hence RSA is a strong encryption algorithm 

that has stood a partial test of time. Undoubtedly, such more 

sophisticated algorithm than RSA will continue to be developed 

as mathematicians discover in more in the fields of number 

theory and cryptanalysis. 
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