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INTRODUCTION 
 

We shall start this unit with the introduction of basic concepts 

and terms required to study the theory of automata and formal 

languages.We shall study what is language and basic operations 

to manipulate strings of a language.Then we shall see the 

classification  of formal languages made by Chomsky and 

relationship among them.There are different mechanism to 

express formal languages,we shall start with regular expression 

which have been widely used in many real life applications such 

as Unix.We shall also learn how we can Next we shall proceed 

to graphical representation,of the languages.deterministic finite 

automata and non-deterministic finite automata are two popular 

and simple way to represent languages pictorially.These two 

devices beautifully explain the way the words of a languages are 

generated.Then we shall study the grammar behind the 

generation of words in regular language.These regular languages 

have many interesting properties such as closure properties and 

decision properties.We shall have in-depth exploration of these 

properties.After having introduction of all these different 

mechanism to express regular languages,we shall see that all of 

these representations are equivalent to each other and we shall 

establish this equivalence.At the end of this unit,we  shall reach 

at the conclusion that regular languages are not everything in 

theory of computer science.There are many languages which are 

not regular.We shall conclude the unit with the study of two 

equivalent but different model of computation called Moore 

model and mealy model. 



CHAPTER 1  

INTRODUCTION TO FINITE AUTOMATA  
 

In this chapter we are going to study a class of abstract machines called 

finite automata. In the theory of computation, a finite automata is an 

abstract machine that has only a finite, constant amount of memory. The 

internal states of the machine carry no further structure. This kind of 

model is very widely used in the study of computation and languages. 

Finite automata are computing devices that accept regular languages and 

are used to model operations of many systems we find in practice. 

Let us consider the operation of an automated teller machine (ATM), a 

popular machine, used for the transaction of the money. Initially our 

machine is waiting for a customer to come. It is in waiting-for-customer 

state. When you put the ATM card in machine, the machine changes its 

state and asks for the pin code, (pc) that is, machine is in another state 

say main window state. From there you have many options to choose 

from. We assume only three options are available namely balance 

enquiry, withdrawal and deposit.  

If you press balance enquiry button a form will be displayed where your 

balance will be displayed. Then you will be asked whether you want any 

other transaction. If you press “yes” then you will return to main 

window otherwise machine will return to waiting-for-customer state.  

        If you press withdrawal (wd) then a form will be displayed where 

you will be asked for the amount to be withdrawn. After typing amount 

you may be asked whether you want any other transaction. If you press 

yes then you will return to main window otherwise machine will return 

to waiting-for-customer state.  

       If you press deposit (de) then another form will be displayed where 

you will be asked for amount to be deposited. After typing amount you 



may be asked whether you want a receipt or not. If you press yes then 

you will get a receipt (not shown in diagram), otherwise you will asked 

whether you want any other transaction. If you press yes then you will 

return to main window otherwise machine will return to waiting-for-

customer state.  

The states and the transitions between states for this automated teller 

machine can be represented with a diagram. In this figure 1.1.1, circles 

represent states and arrows represent state transitions. 

 

Symbols on arrows represent input from user 

 

 

FIGURE 1.1.1 :AN ATM REPRESENTED THROUGH FINITE 

AUTOMATA 



 In this example automated teller machine have gone through (transitions 

between) a number of states responding to the inputs from the customer. 

An automated teller machine looked at this way is an example of finite 

automaton. 

 

 DEFINITION OF DETERMINISTIC FINITE 

AUTOMATA 

      Here we are going to formally define finite automata, in particular 

deterministic finite automata and see some examples. Finite automata 

recognize regular languages and, conversely, any language that is 

recognized by a finite automaton is regular. There are other types of 

finite automata such as nondeterministic automata and nondeterministic 

automata withε-transitions and they will be studied in later chapters. 

      Let us now formally define deterministic finite automaton. Let 

Q be a finite set of states, 

Σ be a finite set of symbols, 

δ  be a function from Q. ×  Σ to Q. δ is called transition function. It 

takes one state and one alphabet symbol as arguments and produces 

another state. 

q0 be a state in Q. It is called the initial state. 

     F be a subset of Q. F is the set of accepting states ( or also called final 

states). 

   Then a deterministic finite automaton is a 5-tuple < Q,  Σ, δ, q0, F >. 

   The term `deterministic’ refers to the fact that on each input there is 

one and only one state to which the automaton can transition from its 

current state. Deterministic finite automaton is generally abbreviated as 

DFA. 



Before we proceed to designing of DFA let us first understand, what 

does the phrase “acceptance of a string “ and “rejection of a string “ 

mean in context of DFA. When we say that a string is accepted by a 

DFA, it means that if DFA begins from its initial state, proceeds 

processing the string by applying transition functions, one symbol at a 

time, and finally when all symbols of the strings get processed, DFA is 

in one of the final states. Otherwise it is considered rejected. 

     DFA’s can be represented in three different ways. The first method to 

represent the DFA is to enumerate all the transition functions required to 

describe the automata. This is the basis for all other methods. We will 

explain this method through an example. 

 

Example 1.1 

Suppose we want to build a finite automata for the language of strings 

that contains only one string {a}. DFA for this language is 

                                                              A= (Q, Σ, δ, q0, F) 

Where 



Finite automata can be represented in tabular form also. In a transition 

table rows represent transition from a state for different input symbols. 

Columns represent transition for a particular symbol. Entry in the ith 

row and j th column represents the state where the automata goes from 

state qi on getting symbol aj. We have given below tabular 

representation of the DFA in example 1.1. State preceded with an arrow 

is initial state and that with *is final state. 

 

                                       TABLE 1.1 

 

      DFAs are often represented by digraphs called state transition 

diagrams or simply transition diagrams. The vertices ( denoted by 

single or available circles) of a transition diagram represent the states of 

the DFA and the arcs labeled with an input symbol correspond to the 

transitions. An arc (p, q) from vertex p to vertex q with label a 

represents the transition δ ( p, a) = q. Double circles indicate the 

accepting states. An arrow precedes start state. We will use transition 

diagrams throughout the book as they give more clear understanding of 

the language compared to transition functions and transition tables. 

        A state transition diagram for DFA in example 1.1 is given below 

in figure 1.2. 



                                           

                                       FIGURE 1.2 

EXAMPLE 1.2 

     DFA for strings consisting of only a’s. 

     Q = {q0, q1}, Σ = {a, b}, F ={q0}, the initial state is q0 and δ is as 

shown in the following table. 

                                          TABLE 1.2 

  A state transition diagram for this DFA is given below. 

                                                      FIGURE 1.3 

 OPERATION OF FINITE AUTOMATA 



    

 Let us see how an automaton operates when it is given some inputs. As 

an example let us consider the DFA of example 1.2. Initially it is in state 

q0. When zero or more a’s are given as an input to it, it stays in state q0 

while it reads all the a’s. Since the state q0 is also the accepting state, 

when all the a’s are read, the DFA is in the accepting state. Thus this 

automaton accepts any string of a’s. If b is read while it is in state q0 

(initially or after reading some a’s), it moves to state q1. Once it gets to 

state q1, then no matter what symbol is read, this DFA never leaves state 

q1. Hence when b appears anywhere in the input, it goes into state q1 

and the input string is not accepted by the DFA. For example strings aaa, 

aaaaaa, etc are accepted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

NONDETERMINISTIC  FINITE  AUTOMATA 

 

A Nondeterministic Finite Automaton ( NFA ) is a finite state machine 

where for each pair of state and input symbol there may be more than 

one possible nest States. In general, NFAs contain less number of states 

compared to DFAs and are simpler to design. NFAs are useful in 

designing applications based on text search. 

 

 FORMAL DEFINITION 

An NFA is a 5 – tuple  (Q, ∑, δ, q0, F), consisting of a finite set of 

symbols of states (Q) 

a finite set called the alphabet (∑ ), 

a transition function ( δ: Q × ∑ → P(Q) ), 

a start(q0∈Q), and  

a set of accepting states (F)  

Where P(Q) is the power set of S.  

As clear from the definition of NFA, output of δ( q , a ) is a set of states 

whose cardinality may vary from 1 to n is the number of states in NFA. 

EXAMPLE 2.1 

Design an NFA for language of strings that start and end with same 

letter. 

Solution :  



                 We assume that all strings are of length greater than or equal 

to two. Our NFA must remember that what was the first symbol it read 

and accordingly there are two different branches in automata, one each 

for a and b. Once it has remembered first symbol (say a), and reached in 

intermediate state ( say q1), other symbols ( in this case b) read are 

insignificant for changing state. It uses the nondeterminism to reach the 

final state upon reading the same symbol. The final transition diagram 

has been given in figure 2.1 

NFA for example 2.1 

 NFA WITH ε – TRANSITIONS  

NFA with ε – transitions ( also called ε – NFA ) are same as NFA with 

one exception: the transition function must include information about 

transitions on ε. 

         Formally, 



         A ε – NFA 5 – tuple, (Q, ∑, δ, q0, F), consisting pf 

a finite set of states (Q), 

         a finite set called the alphabet (∑), 

         a transition function (δ: Q × ( ∑ U ε ) →P(Q) ), 

a start state (q0 ∈  Q), and 

a set accepting states (F) . 

Where P(Q) is the power set of S and ε is the empty string.  

EXAMPLE 2.2 

 The following ε – NFA  M, with a binary alphabet, determines if the 



input contains an even number of 0s or an even number of 1s. 

M = (Q, ∑, δ, q0, F) where  

     Q = {q0,q1,q2,q3,q4}, 

ε= {0,1} 

q0 = q0, 

           F = { q1,q3} and 

The transition function δcan be defined by state transition table shown in 

table,  

        The transition diagram for M is :  

 

 

 

 

Figure 2.2 

M can be viewed as the union of two DFAs: one with staes { q1,q2 } 

and the other with states {q3,q4}. The first counts whether number of 

0’s is even and second counts for number of is to be even. 

 



 EPSILON_CLOSURE 

 

In ε -NFA representation of a regular language, starting from one state, 

machine may go to many other states without getting any single input 

symbol. To find these states we use the concept of ε -close of state q is a 

set, member of which can be computed by following the ε -arcs and 

including the states reached thus so far. We can recursively compute ε -

close(q) as follow  

           Basis Clause : q is in ε -close (q) 

           Inductive Clause  : If state P is ε –close(q) and there ε -arc from 

state P to state r, than r is also in ε -close(q). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 



CHAPTER  3  

EQUIVALENCE OF FINITE AUTOMATA 

We have studied five different method to describe regular languages. In 

this chapter we shall prove all of them, though may appear different in 

appearance, are equivalent. We shall start with the conversion        
to equivalent, then NFAs to DFAs so that nondeterminisms are removed 

and computer programs can be written for simulating them. Then we 

shall also establish equivalence between regular expression and   

    and between NFA to regular expression in the form of Kleen’s 

theorem. Finally we are going to learn that the DFA that recognize a 

regular language can be transformed into a unique DFA by minimizing 

by number of their states. After we finish these conversions, we shall be 

in a position to claim that all forms of these machines describing regular 

languages are in fact equivalent as suggested in figure 3.1.1  

 

 

                    

 

 

       FIGURE 3.1.1 : EQUIVALENCE BETWEEN FA’S AND REGULAR EXPRESSIONS  

 

 



KLEENE’S THEOREM  

Kleene’s theorem states that any regular language is accepted by an FA 

and conversely that any language accepted by an FA is regular. 

Theorem : Any regular language is accepted by a finite automaton 

                          The proof below also provides a mechanism to convert           

regular expression into a       

Proof : This is going to be proven by induction following the recursive 

definition of regular language  

Basic Step : As shown below the languages       and {a} for any 

symbol a in Σ are accepted by an FA.  

 

                                                

     

                        FIGURE 3.1.2 : FA’S ACCEPTING LANGUAGES            

 

Inductive Step : We are going to show that for any languages 

         if they are accepted by FA’s, then        ,        , are accepted 

by FAs. Since any regular language is obtained from     and {a} for any 

symbol a in Σ by using union, concatenation and Kleene star operations, 

that together with the basic step would prove the theorem. 

                  Suppose that           are accepted by FAs         Σ, 

           and                     , respectively. We can without 



loss of generality ,assume that        =  since states can be renamed if 

necessary. 

                 Then          ,        , and   
  are accepted by FAs     

                 ,                     and 

                   , respectively. We are describing each 

construction one by one. 

Construction of    : Union of two finite automata           will 

be described by  

                                                          

 Where 

                                      =          {   }, 

Here     is a state which is neither in    nor in   . 

                                                 {(     )={         }}. 

                                    Note that              for all a in Σ. 

 Construction of     has been illustrated in the figure 3.1.3 

 

                                                      FIGURE 3.1.3 : NFA FOR    

Construction of   : Construction of two finite automata    and    

will be described by  

                                                  



Where  

                                          , 

                                       , 

                                                        )       , and  

                                       

Construction of    has been illustrated in the figure 3.1.4 

 

      

                                FIGURE 3.1.4 : CONCATENTION OF TWO FA’S    AND    

 

Construction of    : Kleen’s closure of a finite automata 

                       

                                                     

Where  

                                             , 

                                     Here     is a state which is not in      

                         }      )=            }, 

       }. 

Construction of             illustrated in the figure 3.1.5 

 



             

                                                  FIGURE 3.1.5 : KLEEN’S CLOSURE OF FA 

It can been proven , though we omit proofs , that these           

   and                            ,       , and   
              . 

Let us illustrate the proof of part 1 of kleen’s theorem by an example. 

Example :  

        An        that accepts the language represented by the regular 

expression (aa+b)* can be constructed as follows using the operations 

given above 

 

                     



           

   

                                            FIGURE 3.1.6 : CONSTRUCTION OF        (aa+b)* 

 

CONVERSION FROM DFA TO REGULAR EXPRESSION 

We know that both DFA and regular expressions are used for describing 

a regular language. Both are just different ways to describe the same 

language and are in fact equivalent. We assume that DFA has been 

presented using transition diagrams. This method is known as state 

elimination method.  

Basic idea behind the state elimination method is to convert some part of 

DFA into regular expression using one of the rules mentioned below. 

Then we eliminate edges and state of the transition diagram using the 

rules iteratively. Finally, we shall have a transition diagram with to 

states connected by an edge. 

RULE 1: Suppose two states are connected by more than one edge 

going in the same direction like  

                            

When          are each regular expressions. We can replace this with a 

single edge that is labeled with a regular expression : 



                           

RULE 2a : If we have three states in a row connected by edges labeled 

With regular expression, we can eliminate the middle state by 

concatenating the two regular expressions and going to third state 

directly. Thus the DFA below  

                   

Is equivalent to  

                     

RULE 2b: If there is self loop on    as in the example below  

                         

Then equivalent DFA will be 

                        

RULE 2c: Before complete eliminating the middle state, make sure 
that labels on all outgoing edges from the state have been changed into 

regular expressions. Consider the transition diagram below. 



            

It can be redrawn as  

                       

 

Let us collect all the pieces together and illustrate the above rules with 

an example  

Example: 

Let us construct a regular expression for the language accepted by DFA 

in the figure 3.2.1  

                     

 

FIGURE 3.2.1: DFA FOR THE EXAMPLE  

 



We can redraw the figure as   

                  

From this diagram it is obvious that equivalent regular expression is 

(a+a*ba*ba*b)* ba * 

 

      EQUIVALENCE OF TWO DFAS 

As discussed earlier, there may be more than one DFA for the same 

regular language. Then one may wonder how to decide that whether the 

two DFA are equivalent. Luckily we have a very easy method to decide 

this problem  

Two DFA are equivalent if for all strings both of them either accept the 

string or reject it. It implies that for same string both of automata either 

reached into final state or both fail to do so. Does it give a clue? Yeah, 

two automata re equivalent if their start states are equivalent. So we have 

following algorithm to decide the equivalence of two DFAs. 

Step 1: Visualize the two DFAs as combined one.  

Step 2: Find equivalent class of states. 

Step 3: If start sate of both automata fall into same class then both are                                 

equivalent or not  

 

Example: 

Consider two DFAs 



 

       

 

 

                                                                     Figure 3.3.1 

 

If we visualize the two automata as one, we find the following two 

equivalent classes of state: {           } and {        }. 

Since start state of both DFAs fall into same classes, these two automata 

are required  

 

 

 

 

 

 

 

 

 

 

 



 

            CONCLUSION  
 

In this thesis novel concepts of normal automata, fan automata And 

rewriting cyclic normal automata are introduced. RCNA has been Used 

to implement signal processing operations with Markov normal 

Algorithms. An attempt was made to perform signal processing 

Operations like arithmetic operations, shift operations, reverse operation 

Using normal algorithm and RCNA. Processing signals using numeric 

computers is possible because Algorithms are written for various 

operations, hence those algorithms Can Be converted into programs 

using any one of the high level programming Language. Symbolic 

computation can be realized with numeric Computers, so users will get 

benefits of both computations. Markov normal algorithms are best 

suitable for writing algorithms For signal operations with productions 

and rules. Examples which are Given in the thesis will help to write new 

algorithm for various Operations. Users can apply normal algorithms in 

the place context free Grammar, context sensitive grammar, unrestricted 

grammar and regular Grammar. The form of writing rules and derivation 

of strings belong to Languages in normal algorithms are quite similar to 

grammars in automata theory and compiler design, hence researchers 

those who are Familiar with those grammars can easily learn and apply 

normal Algorithms which are more powerful tool to design any new 

languages Also. The operations which are designed using normal 

algorithms and RCNA can be implemented as software. So we can 

eradicate the Problem of non availability of software to perform 

advanced signal Processing operations. Other operations of signal 

processing also Accomplished in the same way. Signals are represented 

as strings before They processed by normal algorithms. In any 

programming language we Have data type character or string hence 



having signal as input also no Problem at all. Strings can be stored in a 

memory for further processing So we indirectly achieved modelling 

signals in computer process able Format. Most of the programming 

languages or software has number of String processing operations which 

can be applied to signals because Signals are in the form of strings. Time 

complexity of algorithm is very Important factor when it‘s implemented 

as a program. Even though time Complexity is not as expected but it is 

at infant stage so we can Compromise on performance later efforts can 

be made to improve it. Those who have knowledge in concepts like 

finite state automata, Transition diagrams, grammars and derivations can 

easily follow, learn and use novel concepts normal automata, fan 

automata and rewriting cyclic automata and apply them to solve 

problems in any field wherever automata theory is applicable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPLICATION FOR FINITE AUTOMATA  
 

Finite Automata (FA) – For the designing of lexical 

analysis of a compiler. For recognizing the pattern 

using regular expressions.  

Push Down Automata (PDA) – For designing the 

parsing phase of a compiler (Syntax Analysis).  

Linear Bounded Automata (LBA) – For 

implementation of genetic programming. 

Turing Machine   
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