
AUTOMATA

PROJECT SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENT FOR

THE BACHELOR OF SCIENCE DEGREE IN MATHEMATICS

2017-2020

BY

 JOSEPH NAVEEN P.S

Reg No. 170021032414

ASHIQUE K.S

 Reg No. 170021032401

 SUMITH D.S

Reg No. 170021032437

UNDER THE GUIDANCE OF

Dr. MANJU K MENON

 DEPARTMENT OF MATHEMATICS

ST. PAUL’S COLLEGE, KALAMASSERY

(AFFILIATED TO M.G. UNIVERSITY, KOTTAYAM)

 2017-2020

 CERTIFICATE

This is to certify that the project report entitled “AUTOMATA”

is a bonafide record of studies undertaken by JOSEPH

NAVEEN P.S (Reg no. 170021032414) , ASHIQUE K.S (Reg

no. 170021032401) , SUMITH D.S (Reg no. 170021032437) in

partial fulfilment of the requirements for the award of B.Sc.

Degree in Mathematics at Department of Mathematics, St.

Paul’s College, Kalamassery, during the academic year 2017-

2020.

 Dr MANJU K MENON Dr. SAVITHA K.S

 Project supervisor Head of the Department

 Assistant Professor Assistant Professor

Department of Mathematics Department of Mathematics

Examiner

 DECLARATION

We, JOSEPH NAVEEN P.S (Reg no. 170021032414) ,

ASHIQUE K.S (Reg no. 170021032401) , SUMITH D.S (Reg

no. 170021032437) hereby declare that this project entitled

“AUTOMATA” submitted to Department of Mathematics of St.

Paul’s college, Kalamassery in partial requirement for the award

of B.Sc Degree in Mathematics, is a work done by us under the

guidance and supervision of Dr MANJU K MENON, Department

of Mathematics, St. Paul’s college, Kalamassery during the

academic year 2017-2020

We also declare that this project has not been previously

presented for the award of any other degree, diploma,

fellowship, etc.

KALAMASSERY JOSEPH NAVEEN P.S

 ASHIQUE K.S

 SUMITH D.S

 ACKNOWLEDGEMENT

We express our heartfelt gratitude to our project supervisor Dr

MANJU K MENON, Department of Mathematics, for providing

us necessary stimulus for the preparation of this project.

 We would like to acknowledge our deep sense of gratitude to

Dr. SAVITHA K.S, Head of the Department of Mathematics

and all other teachers of the department and classmates for their

help at all stages.

 We also express our sincere gratitude to Ms. VALENTINE

D’CRUZ, Principal, St. Paul’s College, Kalamassery for the

support and inspiration rendered to us in this project report.

KALAMASSERY JOSEPH NAVEEN P.S

 ASHIQUE K.S

 SUMITH D.S

CONTENT

Sl. No.

TITLE

1

Introduction

2

Chapter 1: Introduction to finite Automata

 Definition of deterministic finite Automata

 Operation of finite Automata

3

Chapter 2 : Nondeterministic finite Automata

 Formal definition

 NFA with ε-Transitions

 Epsilon- Closure

4

Chapter 3 : Equivalence of finite Automata

 Kleenev's Theorem

 Conversion from DFA to regular expressions

 Equivalence of two DFAs

5

APPLICATIONS & CONCLUSION

INTRODUCTION

We shall start this unit with the introduction of basic concepts

and terms required to study the theory of automata and formal

languages.We shall study what is language and basic operations

to manipulate strings of a language.Then we shall see the

classification of formal languages made by Chomsky and

relationship among them.There are different mechanism to

express formal languages,we shall start with regular expression

which have been widely used in many real life applications such

as Unix.We shall also learn how we can Next we shall proceed

to graphical representation,of the languages.deterministic finite

automata and non-deterministic finite automata are two popular

and simple way to represent languages pictorially.These two

devices beautifully explain the way the words of a languages are

generated.Then we shall study the grammar behind the

generation of words in regular language.These regular languages

have many interesting properties such as closure properties and

decision properties.We shall have in-depth exploration of these

properties.After having introduction of all these different

mechanism to express regular languages,we shall see that all of

these representations are equivalent to each other and we shall

establish this equivalence.At the end of this unit,we shall reach

at the conclusion that regular languages are not everything in

theory of computer science.There are many languages which are

not regular.We shall conclude the unit with the study of two

equivalent but different model of computation called Moore

model and mealy model.

CHAPTER 1

INTRODUCTION TO FINITE AUTOMATA

In this chapter we are going to study a class of abstract machines called

finite automata. In the theory of computation, a finite automata is an

abstract machine that has only a finite, constant amount of memory. The

internal states of the machine carry no further structure. This kind of

model is very widely used in the study of computation and languages.

Finite automata are computing devices that accept regular languages and

are used to model operations of many systems we find in practice.

Let us consider the operation of an automated teller machine (ATM), a

popular machine, used for the transaction of the money. Initially our

machine is waiting for a customer to come. It is in waiting-for-customer

state. When you put the ATM card in machine, the machine changes its

state and asks for the pin code, (pc) that is, machine is in another state

say main window state. From there you have many options to choose

from. We assume only three options are available namely balance

enquiry, withdrawal and deposit.

If you press balance enquiry button a form will be displayed where your

balance will be displayed. Then you will be asked whether you want any

other transaction. If you press “yes” then you will return to main

window otherwise machine will return to waiting-for-customer state.

 If you press withdrawal (wd) then a form will be displayed where

you will be asked for the amount to be withdrawn. After typing amount

you may be asked whether you want any other transaction. If you press

yes then you will return to main window otherwise machine will return

to waiting-for-customer state.

 If you press deposit (de) then another form will be displayed where

you will be asked for amount to be deposited. After typing amount you

may be asked whether you want a receipt or not. If you press yes then

you will get a receipt (not shown in diagram), otherwise you will asked

whether you want any other transaction. If you press yes then you will

return to main window otherwise machine will return to waiting-for-

customer state.

The states and the transitions between states for this automated teller

machine can be represented with a diagram. In this figure 1.1.1, circles

represent states and arrows represent state transitions.

Symbols on arrows represent input from user

FIGURE 1.1.1 :AN ATM REPRESENTED THROUGH FINITE

AUTOMATA

 In this example automated teller machine have gone through (transitions

between) a number of states responding to the inputs from the customer.

An automated teller machine looked at this way is an example of finite

automaton.

 DEFINITION OF DETERMINISTIC FINITE

AUTOMATA

 Here we are going to formally define finite automata, in particular

deterministic finite automata and see some examples. Finite automata

recognize regular languages and, conversely, any language that is

recognized by a finite automaton is regular. There are other types of

finite automata such as nondeterministic automata and nondeterministic

automata withε-transitions and they will be studied in later chapters.

 Let us now formally define deterministic finite automaton. Let

Q be a finite set of states,

Σ be a finite set of symbols,

δ be a function from Q. × Σ to Q. δ is called transition function. It

takes one state and one alphabet symbol as arguments and produces

another state.

q0 be a state in Q. It is called the initial state.

 F be a subset of Q. F is the set of accepting states (or also called final

states).

 Then a deterministic finite automaton is a 5-tuple < Q, Σ, δ, q0, F >.

 The term `deterministic’ refers to the fact that on each input there is

one and only one state to which the automaton can transition from its

current state. Deterministic finite automaton is generally abbreviated as

DFA.

Before we proceed to designing of DFA let us first understand, what

does the phrase “acceptance of a string “ and “rejection of a string “

mean in context of DFA. When we say that a string is accepted by a

DFA, it means that if DFA begins from its initial state, proceeds

processing the string by applying transition functions, one symbol at a

time, and finally when all symbols of the strings get processed, DFA is

in one of the final states. Otherwise it is considered rejected.

 DFA’s can be represented in three different ways. The first method to

represent the DFA is to enumerate all the transition functions required to

describe the automata. This is the basis for all other methods. We will

explain this method through an example.

Example 1.1

Suppose we want to build a finite automata for the language of strings

that contains only one string {a}. DFA for this language is

 A= (Q, Σ, δ, q0, F)

Where

Finite automata can be represented in tabular form also. In a transition

table rows represent transition from a state for different input symbols.

Columns represent transition for a particular symbol. Entry in the ith

row and j th column represents the state where the automata goes from

state qi on getting symbol aj. We have given below tabular

representation of the DFA in example 1.1. State preceded with an arrow

is initial state and that with *is final state.

 TABLE 1.1

 DFAs are often represented by digraphs called state transition

diagrams or simply transition diagrams. The vertices (denoted by

single or available circles) of a transition diagram represent the states of

the DFA and the arcs labeled with an input symbol correspond to the

transitions. An arc (p, q) from vertex p to vertex q with label a

represents the transition δ (p, a) = q. Double circles indicate the

accepting states. An arrow precedes start state. We will use transition

diagrams throughout the book as they give more clear understanding of

the language compared to transition functions and transition tables.

 A state transition diagram for DFA in example 1.1 is given below

in figure 1.2.

 FIGURE 1.2

EXAMPLE 1.2

 DFA for strings consisting of only a’s.

 Q = {q0, q1}, Σ = {a, b}, F ={q0}, the initial state is q0 and δ is as

shown in the following table.

 TABLE 1.2

 A state transition diagram for this DFA is given below.

 FIGURE 1.3

 OPERATION OF FINITE AUTOMATA

 Let us see how an automaton operates when it is given some inputs. As

an example let us consider the DFA of example 1.2. Initially it is in state

q0. When zero or more a’s are given as an input to it, it stays in state q0

while it reads all the a’s. Since the state q0 is also the accepting state,

when all the a’s are read, the DFA is in the accepting state. Thus this

automaton accepts any string of a’s. If b is read while it is in state q0

(initially or after reading some a’s), it moves to state q1. Once it gets to

state q1, then no matter what symbol is read, this DFA never leaves state

q1. Hence when b appears anywhere in the input, it goes into state q1

and the input string is not accepted by the DFA. For example strings aaa,

aaaaaa, etc are accepted.

CHAPTER 2

NONDETERMINISTIC FINITE AUTOMATA

A Nondeterministic Finite Automaton (NFA) is a finite state machine

where for each pair of state and input symbol there may be more than

one possible nest States. In general, NFAs contain less number of states

compared to DFAs and are simpler to design. NFAs are useful in

designing applications based on text search.

 FORMAL DEFINITION

An NFA is a 5 – tuple (Q, ∑, δ, q0, F), consisting of a finite set of

symbols of states (Q)

a finite set called the alphabet (∑),

a transition function (δ: Q × ∑ → P(Q)),

a start(q0∈Q), and

a set of accepting states (F)

Where P(Q) is the power set of S.

As clear from the definition of NFA, output of δ(q , a) is a set of states

whose cardinality may vary from 1 to n is the number of states in NFA.

EXAMPLE 2.1

Design an NFA for language of strings that start and end with same

letter.

Solution :

 We assume that all strings are of length greater than or equal

to two. Our NFA must remember that what was the first symbol it read

and accordingly there are two different branches in automata, one each

for a and b. Once it has remembered first symbol (say a), and reached in

intermediate state (say q1), other symbols (in this case b) read are

insignificant for changing state. It uses the nondeterminism to reach the

final state upon reading the same symbol. The final transition diagram

has been given in figure 2.1

NFA for example 2.1

 NFA WITH ε – TRANSITIONS

NFA with ε – transitions (also called ε – NFA) are same as NFA with

one exception: the transition function must include information about

transitions on ε.

 Formally,

 A ε – NFA 5 – tuple, (Q, ∑, δ, q0, F), consisting pf

a finite set of states (Q),

 a finite set called the alphabet (∑),

 a transition function (δ: Q × (∑ U ε) →P(Q)),

a start state (q0 ∈ Q), and

a set accepting states (F) .

Where P(Q) is the power set of S and ε is the empty string.

EXAMPLE 2.2

 The following ε – NFA M, with a binary alphabet, determines if the

input contains an even number of 0s or an even number of 1s.

M = (Q, ∑, δ, q0, F) where

 Q = {q0,q1,q2,q3,q4},

ε= {0,1}

q0 = q0,

 F = { q1,q3} and

The transition function δcan be defined by state transition table shown in

table,

 The transition diagram for M is :

Figure 2.2

M can be viewed as the union of two DFAs: one with staes { q1,q2 }

and the other with states {q3,q4}. The first counts whether number of

0’s is even and second counts for number of is to be even.

 EPSILON_CLOSURE

In ε -NFA representation of a regular language, starting from one state,

machine may go to many other states without getting any single input

symbol. To find these states we use the concept of ε -close of state q is a

set, member of which can be computed by following the ε -arcs and

including the states reached thus so far. We can recursively compute ε -

close(q) as follow

 Basis Clause : q is in ε -close (q)

 Inductive Clause : If state P is ε –close(q) and there ε -arc from

state P to state r, than r is also in ε -close(q).

CHAPTER 3

EQUIVALENCE OF FINITE AUTOMATA

We have studied five different method to describe regular languages. In

this chapter we shall prove all of them, though may appear different in

appearance, are equivalent. We shall start with the conversion
to equivalent, then NFAs to DFAs so that nondeterminisms are removed

and computer programs can be written for simulating them. Then we

shall also establish equivalence between regular expression and

 and between NFA to regular expression in the form of Kleen’s

theorem. Finally we are going to learn that the DFA that recognize a

regular language can be transformed into a unique DFA by minimizing

by number of their states. After we finish these conversions, we shall be

in a position to claim that all forms of these machines describing regular

languages are in fact equivalent as suggested in figure 3.1.1

 FIGURE 3.1.1 : EQUIVALENCE BETWEEN FA’S AND REGULAR EXPRESSIONS

KLEENE’S THEOREM

Kleene’s theorem states that any regular language is accepted by an FA

and conversely that any language accepted by an FA is regular.

Theorem : Any regular language is accepted by a finite automaton

 The proof below also provides a mechanism to convert

regular expression into a

Proof : This is going to be proven by induction following the recursive

definition of regular language

Basic Step : As shown below the languages and {a} for any

symbol a in Σ are accepted by an FA.

 FIGURE 3.1.2 : FA’S ACCEPTING LANGUAGES

Inductive Step : We are going to show that for any languages

 if they are accepted by FA’s, then , , are accepted

by FAs. Since any regular language is obtained from and {a} for any

symbol a in Σ by using union, concatenation and Kleene star operations,

that together with the basic step would prove the theorem.

 Suppose that are accepted by FAs Σ,

 and , respectively. We can without

loss of generality ,assume that = since states can be renamed if

necessary.

 Then , , and
 are accepted by FAs

 , and

 , respectively. We are describing each

construction one by one.

Construction of : Union of two finite automata will

be described by

 Where

 = { },

Here is a state which is neither in nor in .

 {()={ }}.

 Note that for all a in Σ.

 Construction of has been illustrated in the figure 3.1.3

 FIGURE 3.1.3 : NFA FOR

Construction of : Construction of two finite automata and

will be described by

Where

 ,

 ,

) , and

Construction of has been illustrated in the figure 3.1.4

 FIGURE 3.1.4 : CONCATENTION OF TWO FA’S AND

Construction of : Kleen’s closure of a finite automata

Where

 ,

 Here is a state which is not in

 })= },

 }.

Construction of illustrated in the figure 3.1.5

 FIGURE 3.1.5 : KLEEN’S CLOSURE OF FA

It can been proven , though we omit proofs , that these

 and , , and
 .

Let us illustrate the proof of part 1 of kleen’s theorem by an example.

Example :

 An that accepts the language represented by the regular

expression (aa+b)* can be constructed as follows using the operations

given above

 FIGURE 3.1.6 : CONSTRUCTION OF (aa+b)*

CONVERSION FROM DFA TO REGULAR EXPRESSION

We know that both DFA and regular expressions are used for describing

a regular language. Both are just different ways to describe the same

language and are in fact equivalent. We assume that DFA has been

presented using transition diagrams. This method is known as state

elimination method.

Basic idea behind the state elimination method is to convert some part of

DFA into regular expression using one of the rules mentioned below.

Then we eliminate edges and state of the transition diagram using the

rules iteratively. Finally, we shall have a transition diagram with to

states connected by an edge.

RULE 1: Suppose two states are connected by more than one edge

going in the same direction like

When are each regular expressions. We can replace this with a

single edge that is labeled with a regular expression :

RULE 2a : If we have three states in a row connected by edges labeled

With regular expression, we can eliminate the middle state by

concatenating the two regular expressions and going to third state

directly. Thus the DFA below

Is equivalent to

RULE 2b: If there is self loop on as in the example below

Then equivalent DFA will be

RULE 2c: Before complete eliminating the middle state, make sure
that labels on all outgoing edges from the state have been changed into

regular expressions. Consider the transition diagram below.

It can be redrawn as

Let us collect all the pieces together and illustrate the above rules with

an example

Example:

Let us construct a regular expression for the language accepted by DFA

in the figure 3.2.1

FIGURE 3.2.1: DFA FOR THE EXAMPLE

We can redraw the figure as

From this diagram it is obvious that equivalent regular expression is

(a+a*ba*ba*b)* ba *

 EQUIVALENCE OF TWO DFAS

As discussed earlier, there may be more than one DFA for the same

regular language. Then one may wonder how to decide that whether the

two DFA are equivalent. Luckily we have a very easy method to decide

this problem

Two DFA are equivalent if for all strings both of them either accept the

string or reject it. It implies that for same string both of automata either

reached into final state or both fail to do so. Does it give a clue? Yeah,

two automata re equivalent if their start states are equivalent. So we have

following algorithm to decide the equivalence of two DFAs.

Step 1: Visualize the two DFAs as combined one.

Step 2: Find equivalent class of states.

Step 3: If start sate of both automata fall into same class then both are

equivalent or not

Example:

Consider two DFAs

 Figure 3.3.1

If we visualize the two automata as one, we find the following two

equivalent classes of state: { } and { }.

Since start state of both DFAs fall into same classes, these two automata

are required

 CONCLUSION

In this thesis novel concepts of normal automata, fan automata And

rewriting cyclic normal automata are introduced. RCNA has been Used

to implement signal processing operations with Markov normal

Algorithms. An attempt was made to perform signal processing

Operations like arithmetic operations, shift operations, reverse operation

Using normal algorithm and RCNA. Processing signals using numeric

computers is possible because Algorithms are written for various

operations, hence those algorithms Can Be converted into programs

using any one of the high level programming Language. Symbolic

computation can be realized with numeric Computers, so users will get

benefits of both computations. Markov normal algorithms are best

suitable for writing algorithms For signal operations with productions

and rules. Examples which are Given in the thesis will help to write new

algorithm for various Operations. Users can apply normal algorithms in

the place context free Grammar, context sensitive grammar, unrestricted

grammar and regular Grammar. The form of writing rules and derivation

of strings belong to Languages in normal algorithms are quite similar to

grammars in automata theory and compiler design, hence researchers

those who are Familiar with those grammars can easily learn and apply

normal Algorithms which are more powerful tool to design any new

languages Also. The operations which are designed using normal

algorithms and RCNA can be implemented as software. So we can

eradicate the Problem of non availability of software to perform

advanced signal Processing operations. Other operations of signal

processing also Accomplished in the same way. Signals are represented

as strings before They processed by normal algorithms. In any

programming language we Have data type character or string hence

having signal as input also no Problem at all. Strings can be stored in a

memory for further processing So we indirectly achieved modelling

signals in computer process able Format. Most of the programming

languages or software has number of String processing operations which

can be applied to signals because Signals are in the form of strings. Time

complexity of algorithm is very Important factor when it‘s implemented

as a program. Even though time Complexity is not as expected but it is

at infant stage so we can Compromise on performance later efforts can

be made to improve it. Those who have knowledge in concepts like

finite state automata, Transition diagrams, grammars and derivations can

easily follow, learn and use novel concepts normal automata, fan

automata and rewriting cyclic automata and apply them to solve

problems in any field wherever automata theory is applicable.

APPLICATION FOR FINITE AUTOMATA

Finite Automata (FA) – For the designing of lexical

analysis of a compiler. For recognizing the pattern

using regular expressions.

Push Down Automata (PDA) – For designing the

parsing phase of a compiler (Syntax Analysis).

Linear Bounded Automata (LBA) – For

implementation of genetic programming.

Turing Machine

REFERNECE:

FORMAL LANGUAGES AUTOM ATA THEORY

