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                            INTRODUCTION     

Graph theory was born in the 18
th
 century when the Swiss mathematician Leonard 

Euler, considered the problem of seven Konigsberg Bridge. Graph theory is the 

study of graphs, which are mathematical structure used to model pair wise relation 

between objects. A graph is the concept is made up of vertices, nodes or points 

which are connected by edges, arcs or lines.  

In graph theory, graph coloring is a special case of labeling, it is an assignment of 

labels traditionally called “colors” to elements of a graph subject to certain 

constraints. In its simplest form, it is a way of coloring the vertices of a graph sch 

that no two adjacent vertices are of the same color, this is called vertex coloring. 

Similarly, an edge coloring assigns a color to each edge so that no two adjacent 

edges are of the same color and a face coloring of a planar graph assigns a color to 

each face or region so that no two faces that share a boundary have the same color. 

Map coloring is an act of assigning different colors to different features on a map. 

In mathematics where the problem is to determine the minimum number of colors 

needed to color a map so that no two adjacent features have the same color. 

Graph coloring problem is to assign colors to certain elements of a graph subject to 

certain constraints. It has a wide range of application, some of them are register 

allocation, scheduling, job scheduling, aircraft scheduling, time table scheduling 

and so on. 

In this project, the opening chapter provides base knowledge of graph theory. This 

is followed by chapters vertex coloring, edge coloring, map coloring and the last 

chapter talk about the applications  
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                                                CHAPTER 1 

                         PRELIMINARIES    

1. Konigsberg and development of graph theory  
Graph and graph theory began in the early 18

th
 century when the Swiss 

mathematician, Leonard Euler considered the problem of seven 

Konigsberg Bridges. 

The city of Konigsberg in Prussia (now Kaliningrad, Russia) was set on 

both sides of the pregel river, and included two large islands - Kneiphof 

and Lomse- which were connected to each other, or to the two mainland   

portions of the city, by seven bridges. The problem was to devise a walk 

through the city that would cross each of these bridges once and only 

once. 

 

                            

 

It is said that the townsfolk of Konigsberg amused themselves by trying 

to find a route that crossed each bridge just once. Euler considered this 

problem by using the graph given above in the figure, where each edge 
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represents one of the seven bridges. He then showed the impossibility of 

such route by in effect showing that the graph has no Euler trail. 

1.1  Graph  

A graph G=(V(G), E(G)) consist of two finite sets V(G), the vertex set of 

the graph , often denoted by just V, which is a non-empty set of elements 

called vertices, and E(G), the edge set of the graph, often denoted by just E, 

which is possibly a empty set of elements called edges.  

1.2  Complete Graph 

A complete graph is a simple graph in which each pair of distinct vertices is 

joined by an edge. 

1.3 Bipartite Graph  

Let G be a graph. If the vertex set f G can be partitioned into two non-empty 

subsets X and Y (that is, XUY=V and X Y=ɸ) in such a way that each 

edge of G has one end in X and other end in Y, then G is called bipartite. 

The partition V=XUY is called a bipartition of G. 

1.4 Complete Bipartite Graph  

A complete bipartite graph is a simple bipartite graph G, with bipartition 

V=XUY, in which every vertex in X is joined to every vertex of Y. If X has 

m vertices and Y has n vertices, such a graph is denoted by km,n.  

1.5 Incident Vertex 

An edge e of a graph G is said to be incident with the vertex v, if v is an end 

vertex of e. In this case we also say that v is incident with e.  

1.6 Adjacency 

Two edges are adjacent if they are incident with a common vertex. 

     1.7 Vertex Degree  
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Let v be a vertex of graph G. The degree d(v) (or dG(v)) of v is the number 

of edges of G incident with v. 

1.7 Sub graph 

Let H be a graph with vertex set V(H) and edge set E(H) and similarly, let 

G be a graph with vertex set V(G) and E(G). Then we say that H is a sub 

graph of G if V(H) is a subset of V(G) and E(H) is a subset of E(G). In such 

a case, we also say that G is a super graph of H. 

1.8 Path and Cycles 

1.8.1 Walk 

A walk in a graph is a finite sequence W=ve1v1e2….ekvk whose terms are 

alternatively vertices and edges such that each edge e1 has end vertices vk-

1 and vi. ‘W’ is called v-vk walk. The vertex v is called origin and vk is 

called terminal of walk W. The vertices v1,v2,v3,….vk are called internal 

vertices of W. The integer k, the number of edges in walk is called the 

length of the walk W. 

1.8.2 Closed Walk 

Given two vertices u and v of a graph G, a u-v walk is called closed or 

open depending on whether u=v implies that the walk is closed and u≠v 

implies that the walk is open.  

1.8.3 Trail  

If the edges e1,e2,e3,….,ek of the walk, W=v0e1v1e2.....ekvk are distinct then 

w is called a trail. A trail is a walk with no edges is repeated. 

1.8.4 Path 

If vertices v0,v1,v2,….,vk of the walk W=v0e1v1e2….ekvk are distinct then 

W is called a path. A path with n vertices will be denoted by pn and has 

length (n-1). 

1.8.5 Cycle 
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A non-trivial closed trail in a graph G is called a cycle if its origin and 

internal vertices are distinct. The closed trail C=v1v2v3….vnv1 is a cycle, 

if C has at least one edge and v1v2….vn are n distinct vertices. A cycle of 

length k (with k edge) is called a k-cycle. An n- cycle is denoted by Cn  

with n vertices. 

      1.10   Connected Graph 

A vertex u is said to be a connected to a vertex v in a graph G if there is a 

path in G from u to v. A graph G is connected if every two vertices are 

connected. 

Disconnected Graph 

A graph G that is not connected is called a disconnected graph. 

       1.11  Bridge (cut edge) 

An edge e of a graph G is called a (a cut edge or an isthmus) if the 

subgraph G-e has more connected component than G has. 

1.12   Cut Vertex 

    A vertex v of a graph G is called a cut vertex (or a articulation point) of    

G if G-v has more connected components than G has.                                         
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 CHAPTER – 2 

 

VERTEX COLORING 

 

Colors can be used in graphs to model problems where one wishes to avoid some 

form of “Interference” or ensure some “Independence”.  

  

Definition 2.1: 

A vertex coloring of a graph G is a mapping  f: V(G) → S, where S is a set of 

distinct color’s that assigns colors to vertices such that adjacent vertices are 

assigned different colors; it is proper if no two adjacent vertices receive the same 

color. Thus, a proper vertex coloring  f of G is a function  f: V(G) → S such that 

f(u) ≠ f(v), whenever vertex u and v are adjacent in G. 

A k-coloring of G is a coloring which consists of k different colors and G is 

said to be k-colorable.  

E.g: In the Lame Duck Airline problem, Frank Drake, the owner of Lame Duck, 

wants the flights to take place only on Mondays, Wednesdays and Fridays. He also 

wants no more than one flight per day visiting any of the towns. To see if this is 

possible, he constructs the graph of Figure 2.1 which has seven vertices, one 

representing each of the proposed flights, and where an edge joins two vertices if 

the corresponding flights have a town in common. 
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            The Lame Duck Airline network.            The Lame Duck flies again.  

 

The question being asked amounts to whether or not the graph of Figure 2.1 has a 

3-coloring. But clearly, Figure 2.2 shows that it has a 4-coloring. 

 

Definition 2.2: 

The minimum number n for which there is an n-coloring of the graph G is called 

the Chromatic index or Chromatic number of G and is denoted by χ(G). If χ(G) = 

k, we say that G is k-chromatic. 

In the Lame Duck Airlines problem, since we have displayed a 4-coloring of 

G (Figure 2.2), this means that χ(G) = 4. Thus the seven flights can be scheduled 

on four days but not three, subject to the stated restrictions. 

 

For example, the chromatic number of: 

 a) The Petersen graph is χ(G) = 3 (Figure 2.3). 

 b) The Grötzsch graph is χ(G) = 4 (Figure 2.4). 

 

Figure 2.2 Figure 2.1 
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     Figure 2.3: χ(G) = 3.                Figure 2.4: χ(G) = 4. 
 

Note 1: 

If the graph G has a loop at the vertex v, then v is adjacent to itself and so no 

coloring of G is possible. So we will assume that in any vertex coloring, content 

graphs have no loops.  

 

Note 2: 

Two distinct vertices are adjacent, if there is at least one edge between them. So 

for our purpose, all but one of the set of parallel edges may be ignored. That is, the 

graphs using for vertex coloring are simple graphs.  

 

Theorem 2.1: 

a) If the graph G has n vertices, then χ(G) ≤ n. 

b) If H is subgraph of the graph G, then χ(H) ≤  χ(G). 

c) χ(Kn) = n for all n ≥ 1. 

d) If the graph G contains Kn as a subgraph, then χ(G) ≥ n. 

e) If the graph G has G1, G2, … , Gn as its connected components, then 

χ(G) = max χ(Gi).    

             1≤i≤n 

Proof: 
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From theorem 2.1(d), we can now solve the Lame Duck Airlines problem. The 

problem graph in Figure 2.1 has K4 as a subgraph (induced by the vertices A, B, C 

and F) and so χ(G) ≥ 4. Since we have a 4-coloring of G, this means χ(G) = 4. 

Thus, the seven flights can be scheduled on four days but not three. 

Let us now look at some simple examples. Firstly, if the graph G has no 

edges, then each vertex can be given the same color, i.e., χ(G)= 1. Clearly, the 

converse also holds. Thus χ(G) = 1 if and only if G is an empty graph. 

Now let G = Cn, the cycle of length n, with vertices V1, V2, … , Vn appearing 

in order around the cycle. If we assign color 1 to V1, V2 must be colored differently, 

say, by color 2. But then, we may color V3 by 1 again. Continuing in this fashion 

round the cycle, we see that if n is odd, then Vn needs a different color, say, color 3. 

Thus χ(Cn ) = 2 if n is even and 3 if n is odd.  

 

Theorem 2.2: 

Let G be a non-empty graph. Then χ(G)=2 if and only if G is bipartite. 

Proof: 

Let G be bipartite with bipartition V=X U Y. Assigning color 1 to all vertices in X 

and color 2 to all vertices in Y, gives 2-coloring for G and so, since G is non-

empty,  χ(G) = 2. 

Conversely, suppose that χ(G) = 2. Then G has 2-coloring. Denoted by X, 

the set of all those vertices colored 1 and by Y, the set of all vertices colored 2. 

Then no two vertices in X are adjacent and similarly for Y. Thus any edge in G 

must join a vertex in X and a vertex in Y. Hence, G is bipartite with bipartition V = 

X U Y. 

 

Corollary: 

Let G be a graph. Then, χ(G) ≥ 3, if and only if G has an odd cycle.  
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Proof: 

Unlike the n = 2 case, there is no easy characterization of graphs with chromatic 

index 3, or for that matter, higher index of an arbitrary graph G, provided the 

degree of all their vertices of G. For this, first we need some notion. 

Note 3: 

For a graph G, we let ∆(G) = max {d(v) : v is a vertex of G}. 

Thus ∆(G) is the maximum vertex degree of G. 

 

Theorem 2.3: 

For any graph G, χ(G) ≤ ∆(G) + 1.  

Proof: 

To prove, we use induction on n, the number of vertices in G. Since, here G = k1, 

χ(G) = 1 and ∆(G) = 0. The theorem is true for n = 1. 

Now suppose that the result is true for all graphs with n – 1 vertices. When n 

is a fixed vertex of G, the subgraph G – V has n – 1 vertices and so by the 

induction assumption, χ(G – V) ≤ ∆(G – V) + 1. This allows us to choose a vertex 

coloring of G – V involving ∆(G – V) + 1 colors. Now, our vertex v has at most 

∆(G) neighbors and we can use such a color for v, giving a ∆(G + 1) coloring for 

G. 

On the other hand, if ∆(G) ≠ ∆(G – V) then, ∆(G – V) < ∆(G) and simply 

coloring v with a brand new color, gives a ∆(G – V + 2)-coloring of G, which is 

good enough since ∆(G – V) + 2 ≤ ∆(G) + 1. Hence in both cases, we have       

χ(G) ≤ ∆(G) + 1. Hence, the proof. 

 

If G = kn or a cycle of odd length, we actually have χ(G) = ∆(G) + 1. However, we 

can often improve upon theorem. For this purpose, we describe a technique which 

allows us in certain. 
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                        CHAPTER – 3  

                      EDGE COLOURING 

 Definition: 

An edge colouring of a loopless graph G is a function П: E(G)→ S, where S is a 

set of distinct colours; it is proper if no two adjacent edges receive the same colour. 

Thus a proper edge-colouring of G is a function П: E(G) → S such that П(e) ≠ 

П(e') whenever edge e and e' are adjacent in G. 

 

Let G be a empty graph. An edge coloring of G assigns colors, usually denoted by 

1,2,3,…to the edges of G, one color per edge, so that adjacent edges are assigned 

different colors. 

            A K-edge coloring of G is a coloring of G which consists of K different 

colors and in this case G is said to be K- edge colorable.  

            The minimum number n for which there is an n-coloring of G is called the 

Edge chromatic number or Edge chromatic index of G and is denoted by X1(G).If 

X1(G)=k, we say that it is K-edge chromatic. 

       

 e 

 

                                     

   f 
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3.1 ELEMENTARY PROPERTIES 

(1) If H is a subgraph of G, then X1(H)≤X1(G) 

(2) Let ∆(G) denote the maximum vertex degree of G as usual, we have 

∆(G)≤X1(G).Since if v is any vertex of G with d(v)= ∆(G),then the ∆(G)edges 

incident with v must have a different colour in any edge coloring of G. 

               X1(G) is either ∆(G) OR ∆(G)+1 

3.2 KEMPE CHAIN ARGUMENT 

        Let G be a graph with an edge coloring involving at least 2 different colors, 

denoted by i & j. Let H(i,j) denote the subgraph of G induced by all the edges 

colored either i or j. Let K be a connected component of this subgraph. Then, as the 

reader can easily check, K is just a path whose edges are alternatively colored by 

i& j and if we interchange the colors on these edges, but leave the colors on all the 

other edges of G unchanged, the result is a new coloring of G, involving the same 

initial colors. As in the vertex coloring situation we refer to such a component k as 

a Kempe chain and this recoloring technique as the Kempe chain argument. 

         Given an edge coloring of the graph G involving the color we say that it is 

present at a vertex v of G if there is an edge colored incident with v. If there is no 

such edge incident with v then we say that i is absent from v. 

Theorem 3.3: 

Let G be a non-empty bipartite graph. Then χ'(G) = ∆(G). 

Proof:  
The proof is by induction on the number of edges of G. The result is clearly true if 

G has just one edge. Now let G have more than one edge and assume that the result 

is true for all non-empty bipartite graphs with fewer edges than G. Since ∆G ≤ 
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χ'(G) is suffices to prove that G has a ∆(G)-edge coloring. To simplify the notation 

let ∆(G) = k. Let e be some fixed edge of G. Then the edge-deleted subgraph G – e 

is bipartite with less edges than G and so, by the induction assumption, has a            

∆(G – e)-edge coloring and is a k-coloring, since ∆( G – e) ≤ ∆(G) = k. We will 

show that the same k colors can be used to color G. 

Let the uncolored edge e have vertices u and v. Since d(u) ≤ k in G and e is 

uncolored, there is at least one of the k colors absent from u. Similarly, at least one 

of these colors is absent from v. If there is a color absent from both u and v, simply 

use it to color e and we get a k-edge coloring of G, as required. Thus we are left to 

deal with the case where there is a color i present at u but absent from v and a color 

j present at v but absent from u. 

Let K be the Kempe chain containing u in the subgraph H(i,j) induced by the 

edges colored i or j. Now suppose that v is also in K. Then, there is a path P in K 

from u and v. Since u and v are adjacent, they do not belong to the same bipartition 

subset of the bipartite graph G and so, the path P must have odd length. Moreover, 

since the color i is present at u, the first edge of P is colored i. Since the edges of P 

are alternately colored i and j, and P is of odd length, this implies that the last edge 

of P, that incident with v, is also colored i. This is a contradiction since i is absent 

from v. Hence v does not belong to the Kempe chain K. 

We now use the Kempe chain argument on K. This interchanging of colors 

makes i now absent from u, but does not affect the colors of the edges incident 

with v. Thus i is absent from both u and v in this new k-edge coloring. As before, 

now we can safely color edge e by i to produce a k-edge coloring of G. 

Before we go on to look at the edge-chromatic index of complete 

graphs, let us briefly describe an application of this theorem to the 

construction of Latin squares. 
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A Latin square (of order n) is an n × n matrix having the numbers 1, 2, ... , n 

as entries such that no single number appears in more than one row and in more 

than in one column. They are used frequently by statisticians and quality control 

analysts in experimental designs. We can show that a Latin square of order n can 

be constructed using an n-edge coloring of the complete bipartite graph Kn,n. Note 

that ∆(Kn,n) = n and so by this theorem, Kn,n does have an n-edge coloring but no 

edge coloring with less than n colors. 

  

Theorem 3.4  

Let G=Ka, the complete graph on n vertices, n≥2.Then X1(G)={ ∆(G)(=n-1) if n is                        

even 

                                                                                              ∆(G)+1(0= ) if n is odd} 

Theorem 3.5 (Vizing’s Theorem): 

Although it is true that for any loopless graph G, χ'(G) ≥ ∆(G), it turns out that for 

any simple graph G, χ'(G) ≤ 1 + ∆(G). This major result in edge coloring of graphs 

was established by Vizing and independently by Gupta. 

That is, the theorem states that, for any simple graph G, 

∆(G) ≤ χ'(G) ≤ 1 + ∆(G). 

Theorem 3.6 

Let G be a nontrivial graph .Then ∆(G)≤ X1(G) ≤∆(G)+1 
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                           CHAPTER 4 

                       MAP COLORING 

Definition 4.1: 

A map is defined to be a plane connected graph with no bridges. 
 

Definition 4.2: 

A map G is said to be k-face colorable, if we can color its faces with at most 

k colors in such a way that no two adjacent faces, i.e., two faces sharing a 

common boundary edge, have the same colors. 
 

Definition 4.3: 

The Four Color Conjecture states that, if the plane is divided into regions and 

the regions are colored such that no two regions with a common edge have 

the same color, then at most four colors are required, i.e., every map is 4-face 

colorable. 

THE FOUR CONJUCTURE: Every map is 4 colorable. 

Theorem 4.1  

(a) A map G is K-face colorable if an only if its dual G is k-vertex colorable 

(b) Let G be a plane connected graph without loops , then G has a vertex 

coloring of k colors if and only if its dual G* has a k-face coloring. 

Theorem 4.2 

              A map G is two face colorable if and only if its an Euler graph. 

 Theorem 4.3 

               Let G be a cubic map, ie a map in which each vertex has degree 3. Then 

G has as 3-face coloring if and only if each of its faces has even number of edges 

on its boundary. 
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Proof 

          First suppose that G has a 3-face coloring using colors α, β and γ. 

                                Let ‘f’ be any interior face of G colored α. Then the faces 

surrounding f must be colored β or γ. Looking at these faces in turn as we go 

clockwise round f, since no 2 faces of the same color can be adjacent, those 

colored β must alternate with those colored γ and they must be even in number. 

Since each of these faces corresponds to as edge on the boundary of f, it follows 

that f has even degree. A similar argument applies to the interior face of G. 

        Conversely, we first prove a dual result. Let H be a plane connected Euler 

graph in which every face has degree three, ie, each face is triangle. We will show 

that H has a 3-colouring,ie,a vertex coloring of three colors. First, its straight 

forward to see that every edge of H is a part of a cycle and so H has no bridge. 

Hence H is Euler map and so H has no bridge. Hence H is Euler map and so, by 

theorem 4.2, H is 2-face colorable. Let us choose red and blue to color the face of 

H. 

         Now choose a red face  f of H. Starting at a particular vertex of f and visiting 

the other 2 traveling clockwise, color the first vertex a, the second vertex b and 

third c. Any face g adjacent to f is colored. Color the remaining vertex of G with 

the third unused color. This result in the three colors a, b and c being assigned, in 

that order, to the vertices of G in anticlockwise fashion. 

          We can now extend this vertex coloring to all the vertices of H, resulting in a 

clockwise allocation of a,b, and c to red faces and an anticlockwise allocation to 

blue faces, as shown in figure. Thus we have shown that if H is any plane 

connected Euler graph in which every face has degree three, then H has 3-

colouring 
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Now let G be a cubic map in which each face has even degree. Then In the dual 

map G* each vertex has even degree while each face has degree three. Hence by 

our arguments of the previous two paragraphs G* has a 3-colouring. Thus, by 

theorem 4.1, that not all maps are 3-face colorable. For example, the cubic map of 

figure has faces of odd degree and so by the theorem, cannot be 3-face colorable. 

 

 

 

 

 

 

 

Of course the 4 color says that just one more color is needed to be able to color all 

maps. We will prove shortly the five colors are sufficient but first we give an easy 

proof that six color suffice. 
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Definition  

A plane graph in which every face has degree three is called a triangulation. 

Theorem 

THE FOUR COLOUR THEOREM 

Every map can be colored in four or fewer colors . 

In mathematics , the four color theorem, or the four color map theorem, states that 

given any separation of a plane into contiguous regions, producing a figure called a 

map, no more than four colors are required to color the regions of the map so that 

no two adjacent regions have the same color. Adjacent means that two regions 

share a common boundary curve segment, not merely a corner where three or more 

regions meet. It was the first major theorem to be proved using a computer. 

Initially this proof was not accepted by all mathematicians because the computer 

assisted proof was infeasible for a human to check by hand. Since then the proof 

has gained wide acceptance, although some doubters remain. 

 

                           

 

 

 



24 
 

                        CHAPTER – 5 

      APPLICATIONS OF GRAPH COLORING                          

1.Scheduling 

Vertex coloring models to a number of scheduling problems. In the cleanest form, 

a given set of jobs need to be assigned to time slots, each job requires one such 

slot. Jobs can be scheduling in any order, but pairs of jobs may be in conflict in the 

sense that they may not be assigned to the same time slot, for example because 

they both rely on a shared resource. The corresponding graph contains a vertex for 

every job and an edge for conflicting pairs of jobs. The chromatic number of the 

graph is exactly the minimum make span, the optimal time to finish all jobs 

without conflicts. 

Details of the scheduling problem define the structure of the graph. For example, 

when assigning aircraft to flights, the resulting conflicting graph is an interval 

graph, so the coloring problem can be solved efficiently. In bandwidth allocation to 

radio stations, the resulting conflict graph is a unit disk graph, so the coloring 

problem is 3-approximable. 

2.Register Allocation 

A compiler is a computer program that translates one computer language into 

another. To improve the execution time of the resulting code, one of the techniques 

of compiler optimization is register allocation, where the most frequently used 

values of the complied program are kept in the fast processor registers. Ideally, 
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values are assigned to registers so that they can all reside in the registers when they 

are used. 

 

 

 In compiler optimization, register allocation is the process of assigning a 

large number of target program variables onto a small number of CPU 

registers. This problem is also a graph coloring problem. Ideally, values are 

assigned to registers so that they can all reside in the registers when they are 

used. This is a model of a graph coloring problem, where the compiler 

constructs an interference graph G of the program and vertices are variables. 

An edge connects two vertices if they are needed at the same time. If the 

graph can be colored with k colors, then any set of variables needed at the 

same time can be stored in at most k registers and the uncolored variables are 

split into memory. 

  

3.GSM Mobile Phone Networks: 

Groups Special Mobile (GSM) is a mobile phone network created to provide a 

standard for a mobile telephone system, where the geographical area of this 

cellular network is divided into hexagonal regions or cells. Each cell has a 
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communication tower which connects with mobile phones within the cell. All 

mobile phones connect to the GSM network by searching for cells in the 

immediate vicinity. Since GSM operate only in four different frequency ranges, it 

is clear by the concept of graph theory that only four colors can be used to color 

the cellular regions. These four different colors are used for proper coloring of the 

regions. Therefore, the vertex coloring algorithm may be used to assign at most 

four different frequencies for any GSM mobile phone network. 

For a map drawn on the plane or on the surface of a sphere, the Four Color 

Theorem asserts that it is always possible to color the regions of a map properly 

using at most four distinct colors such that no two adjacent regions are assigned the 

same color. Now, a dual graph is constructed by putting a vertex inside each region 

of the map. Connect two distinct vertices by an edge if their respective regions 

share a whole segment of their boundaries in common. Then proper coloring of the 

dual graph gives proper coloring of the original map. Since, coloring the regions of 

a planar graph G is equivalent to coloring the vertices of the dual graph and vice 

versa, by coloring the map regions using Four Color Theorem, the four frequencies 

can be assigned to the regions accordingly. 

 

 4. Sudoku: 

Sudoku is a very popular puzzle. The puzzle consists of a 9x9 grid with digits so 

that each column, each row and each of the nine 3x3 sub-grids that compose the 

grid contains all of the digits from 1 to 9 appearing once, i.e., numbers in rows are 

not repeated, numbers in columns are not repeated and numbers in 3x3 sub-grids 

are not repeated (order of the number when filling is not important). This can be 

viewed as graph coloring.  
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Figure 5.2 
 

In general, graph coloring is the assignment of colors to the vertices of a 

graph such that no two adjacent vertices have the same color. Here, the graph will 

have 81 vertices with each vertex corresponding to a cell in the grid. Two distinct 

vertices will be adjacent if and only if the corresponding cells in the grid are either 

in the same row, or same column, or same sub-grid. Each completed Sudoku 

square then corresponds to a k-coloring of the graph. Connect every pair of vertices 

whose squares are buddies by edge. Then each vertex connects to 20 other vertices, 

i.e., 81x20/2 = 810 edges. This is same as finding 9-coloring graph (Figure 5.2). 

 

5. Aircraft scheduling: 

Assume that there are k aircrafts and they have to be assigned to n flights, where 

the i-th flight should be during the time interval (ai ,bi). Clearly, if two flights 
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overlap, then the same aircraft cannot be assigned to both the flights. This problem 

is modeled as a graph as follows. 

Let the vertices represent airports. Consider there is an edge from vertex A to 

vertex B, if there is a direct flight from the airport represented by A to the airport 

represented by B. Airlines use minimum spanning trees to work out their basic 

route system. Now, the vertices of the conflict graph correspond to the flights. Two 

vertices will be connected, if the corresponding time intervals overlap. Therefore, 

the graph is an interval graph that can be colored optimally in polynomial time. 

  

6. Minimum sum coloring: 

In minimum sum coloring, the sum of the colors assigned to the vertices is minimal 

in the conflict graph. The minimum sum coloring technique can be applied to the 

scheduling theory of minimizing the sum of completion times of the jobs, which is 

the same as minimizing the average completion time. The multicoloring version of 

the problem can be used to model jobs with arbitrary lengths. Here, the finish time 

of a vertex is the largest color assigned to it and the sum of coloring is the sum of 

the finish time of the vertices. That is, the sum of the finish times in a 

multicoloring is equal to the sum of completion times in the corresponding 

schedule. 

 

7. Time table scheduling: 

Allocation of classes and subjects/periods to the professors is one of the major 

issues if the constraints are complex and graph theory (particularly, graph coloring) 

plays an important role in this problem. Suppose in a university, there are m 

professors T1, T2, … , Tm and n classes C1, C2, … , Cn . Each professor Ti is expected 

to teach the class Cj for pij periods. It is clear that during any particular period, no 

more than one professor can handle a particular class and no more than one class 

can be engaged by any professor. Our aim is to schedule a complete timetable for 
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the day with the minimum possible number of periods. This problem is known as 

the ‘Timetable Problem’. 

We represent this problem by a bipartite graph G with bipartition (T,C), where T 

represents the set of professors Ti and C represents the set of classes Cj. Further, Ti 

is made adjacent to Cj in G with pij parallel edges if and only if professor Ti is to 

handle class Cj for pij periods. Now in any one period, it is presumed that each 

professor can teach at most one class, and each class can be taught by maximum 

one professor. We color the edges of G so that no two adjacent edges receive the 

same color. Then edges in a particular color class, i.e., the edges in that color, 

forms a matching in G and corresponds to a schedule of work for a particular 

period. Hence, the minimum number of periods required is the minimum number 

of colors in an edge coloring of G, in which adjacent edges receive distinct colors. 

In other words, it is the edge-chromatic number of G. Thus a teaching schedule for 

one period corresponds to a matching in the graph and conversely, each matching 

corresponds to a possible assignment of professors to classes for one period. 

Hence, if no professor teaches for more than p-periods, then the teaching 

requirements can be scheduled in a p-period timetable. We thus have a complete 

solution to the problem, i.e., it is equal to the chromatic number of the graph. For 

example, consider there are 4 professors, namely m1, m2, m3 and m4, and 5 subjects, 

say n1, n2, n3, n4 and n5 to be taught. 
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(a)               

 

 

Then the bipartite graph (Figure 5.3(a)) and its teaching requirement matrix            

p = [pij] (Figure 5.3(b)) with 4 professors and 5 subjects is as shown. 

 

The proper coloring of the graph can be done by four colors using the vertex 

coloring algorithm, which leads to the edge coloring of the bipartite multigraph G. 

In a similar manner, graph coloring can be used to schedule exams so that no two 

exams with a con student are scheduled at the same time. 

 

8. Job scheduling: 

Here the jobs are assumed as the vertices of the graph and there is an edge between 

two jobs, if they cannot be executed simultaneously. Then there is a 1-1 

correspondence between the feasible scheduling of the jobs and the colorings of 

the graph. 

 

 

 

                 

 

 

 

Figure 5.3 (b) 



31 
 

                PRACTICAL EXERCISE OF MAP COLORING 

The convention of using colors comes from coloring countries on a map where 

each country should have a different color from its neighbor. However, countries 

on a map is an example of a planar graph and for planar graphs, four colors are 

enough. In the case of non-planar graphs, we do not know how many colors are 

required.A geographical map of countries or states drawn on the plane or the 

surface of a sphere, where no two adjacent cities are assigned same color is 

an example of Graph coloring. This is particularly known as Map coloring 

and it is possible to color any map in four colors using Four Color Theorem.  
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Here is a practical example of Map coloring of an Indian state, Kerala, 

which has 14 districts, using four colors, where no two adjacent districts are 

assigned same color. 
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                              CONCLUSION 

Graph coloring is still a very active field of research, we have studied some 

important theorems on vertex coloring, edge coloring in this project. Graph 

coloring enjoys many practical applications as well as theoretical challenges. 

Beside the classical types of problems, different limitations can also be set on 

the graph, or on the way a color is assigned, or even on the color itself. It has 

even reached popularity with the general public in the form of the popular 

number puzzle Sudoku.                        
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