E	9	7	1	n
	U		_	U

(Pages: 3)

Reg. No		
Name	tanima(I h)	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2014

First Semester

Complementary Course—Physics

PROPERTIES OF MATTER, MECHANICS AND FOURIER ANALYSIS

(For Mathematics Model I and Statistics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 60 Marks

Candidates can use clark's tables and scientific non-programmable calculators.

Part A (Very Short Answer Questions)

Answer all questions briefly. Each question carries 1 mark.

- 1. Define Poisson's ratio? Explain.
- 2. Define Yield point and breaking stress.
- 3. Which is more elastic (i) rubber or steel; (iii) air or water?
- 4. A bicycle wheel has a special design in that the rim is supported by spokes. What would happen if the tyre is mounted on a solid rim?
- 5. Explain the significance of static torsion.
- 6. What is resonance? Write its practical applications.
- 7. Explain parallel axes theorem.
- 8. Write Dirichlet's conditions for Fourier series.

 $(8 \times 1 = 8)$

Part B (Brief Answer Questions)

Answer any **six** questions. Each question carries 2 marks.

- 9. When an object is stretched, its transverse dimension decreases. What happens to its volume? Explain.
- 10. Assume that the bulk modulus of aluminium is 7.5×10^{10} N/m². How much the pressure must be increased if the volume of a block of aluminium is decreased by 1%?
- 11. Why are the curved tracks generally banked?
- 12. If one end of a bar is fixed and a load is applied to the other end, calculate the depression at the free end?

- 13. Explain how to calculate the moment of inertia of a ring?
- 14. Derive the expression for damped oscillations.
- 15. Discuss the applications of static torsion.
- 16. Does the hammer of an elastic bell make free or forced vibrations when the bell is ringing? Explain.
- 17. Explain why a loaded bus is more comfortable than an empty bus?
- 18. Write down the exponential Fourier series expansion of the periodic signal $x(t) = 2\cos(2\pi t)$.

 $(6 \times 2 = 12)$

Part C (Problems /Derivations)

Answer any four questions. Each question carries 4 marks.

- 19. A wire 0.32 mm in diameter elongates by 1 mm when stretched by a force of 0.33 kg-wt and twists through 1 radian when equal and opposite torques of 145×10^{-7} N-m are applied at its ends. Find Poisson's ratio for the wire.
- 20. A 10 kg object is whirled in a horizontal circle on the end of a wire. The wire is 0.3 m long, has cross-section 10^{-6} m² and has breaking stress 4.8×10^7 N/m². What is the maximum angular speed the object can have ?
- 21. A Gramophone turntable rotating at 75 r.p.m. slows down uniformly and stops in 5 seconds after the motor is turned off.
 - (a) Find its angular acceleration.
 - (b) Number of revolutions made in this time.
- 22. A body of mass 5 kg acquires an acceleration of 10 rad/s² by an applied torque of 2 Nm. Calculate its moment of inertia and radius of gyration.
- 23. If the displacement of a moving particle at any time is given by $x = a \cos wt + b \cos wt$, show that the motion is SHM. If a = 4 and b = 5 and w = 2, then calculate the period, maximum velocity and maximum acceleration.
- 24. A mass of 500 gm hungs from a spring. If the mass is pulled downward and let it go, it executes SHM. Calculate the time period if the same spring is stretched 16 cm by 400 gm mass.

 $(4 \times 4 = 16)$

Part D (Essay /Problems)

Answer any **two** questions. Each question carries 12 marks.

- 25. Show that for a light cantilever of length l and carrying a load w at its free end, the depression of a point x distance apart from fixed end is given by $y = \frac{W}{YI} \left(\frac{lx^2}{2} \frac{x^3}{6} \right)$ where I is the geometrical moment of inertia.
- 26. Define modulus soft rigidity n. Show that a tangential stress T is equivalent to a tensile stress T_t and a compressive stress T_c at right angles to each other and also prove the relation $n = \frac{y}{2(1+\sigma)}$.
- 27. (a) Obtain the angular momentum of a rigid body about a fixed axis and define moment of inertia about the axis of rotation.
 - (b) Establish a relation between the torque applied and the angular acceleration produced in a body about a given axis. What is the effect of torque on the rotation of the body?
- 28. Obtain the Fourier series of the following function:

 $(2 \times 12 = 24)$