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B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2014
Third Semester
Complementary Course—Statistics——;PROBABILITY DISTRIBUTION
[Common to B.Sc. Mathematics, Physics and Computer Applications (Three main)]
[2013 Admissions]
Time : Three Hours - Maximum : 80 Marks
Part A (Short Answer Questions)

Answer all questions.
1 mark each.

If X follows a binomial distribution (6, 0.3), what is the distribution of 6 — X ?
Define a Poisson distribution with parameter A.

IfX ~ N (u, 02), what is the maximum probability occurring at x = p ?

Find out the 7tP central moment of N (u, o2).

What is the sum of two independent exponential r.v’s with parameter 6 ?
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In case of one parameter gamma distribution. What is the relation connecting mean and
variance ?

What is the distribution of the ratio of 2 independent standard normal r.vs ?

=

Write down the mean and variance of a Chi-square r.v. with 2 d.f.
State Tchebycheff's inequality.
10. Define discrete uniform distribution.
(10 x 1 =10)
Part B (Brief Answer Questions)

Answer any eight questions.
2 marks each.

11. Find the m.g.f. of binomial distribution (n, p). ‘

12. Establish the additive property of Poisson distribution.

13. Define Beta type I and type II distributions.

14. Establish lack of memory property of geometric distribution.

15. State weak law of large numbers. Give an example where the weak law is obeyed.
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A r.v. X has mean = 3 and S.D. = 2 Find an upper bound to p(|X-3|>4).

Find the mode of a binomial distribution for which mean = 4 and S.D. = /3.

Define parameter, statistic, sampling distribution and standard error.
Find the relationship between Chi-squares and F random variables.
Define a ‘t’ statistic. Give an example.
3 . - - ns2 .
What is the distributions of ¥ =—5-, where X ~ N (y, o?) and S? is the sample variance ? What is
o
the mean and m.gf. Y ?
State Lindeberg-Levy form of CLT. Mention its uses.
(8 x 2 =16)
Part C (Description /Short Essay)

Answer any six questions.
4 marks each.

E

State and prove Bernoullis’ law of large numbers.
Derive the m.g.f. of gamma distribution and hence obtain its mean and variance.

For a normal distribution 38% of the observation are below 64 and 12% over 92. Find the mean
and variance.

Use CLT to find the least value of n if we require p (X >up+0.281 0) =0.05.
If X~ an exponential distribution with parameter 1, obtain p(lX -1> 2) by Tchebychev’s inequality
and compare it with the actual probability.

Obtain the sampling distribution of mean and variance of a sample of size ‘n’ taken form N (y, 2).

‘ n+1)
A r.v. X has a Chi-square distribution with n d.f. show that E (\fi ) =2 —2

o
"(3)

2
If X; is a r.v. which assumes values i and —i with equal probabilities, show that the law of large
numbers can not be applied to the sequence X, X,, . . .

State and prove Bernoullis’ law of large numbers.

(6 x4 =24)

—



32.

33.

34.

35.

3 E 9293
Part D (Essay)

Answer any two questions.
Each question carries 15 marks.

Define a normal probability law. What are its important characteristics ? Derive the mean and
variance of X ~ N (0, 1) ?

Show that a Poisson distribution tends to a normal distribution. Establish the recurrence relation
satisfied by the central moments of a Poisson distribution.

(a) If E(X)=170,c =17, how large a sample should be taken in order that p{|§ = 70l 51} 20.99,

(b) Bring out the importance of CLT and weak law of large numbers.

(a) IfX,,....X, aren independent r.vs each having gamma distribution with parameters (A, n),

n
obtain the distribution of _les .
. b=

(b) Derive the distribution of the difference of two sample means each following normal distribution
with identical variance (unknown) with small sample sizes.

(2 35:= 30)



