T.V	j=19 -4	00
L	71	99

(P	ag	es		4)
----	----	----	--	----

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Fourth Semester

· Core course - ELECTRICITY AND ELECTRODYNAMICS

(Common for B.Sc. Physics Model II, B.Sc. Physics Model II, B.Sc. Physics – EEM, B.Sc. Physics – Instrumentation)

(2011 Admission onwards)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions. Weight 1 for each bunch.

Bunch I

1.	At the critically damped growth,	the charge increases in a LCR circuit without any oscillat	ior
	to the maximum value		
	a) Rapidly.	(b) Smoothly.	
	(c) Immediately.	(d) In a very short interval of time.	

- 2. The power factor can be improved by connecting a _____ across the inductance in an a.c. circuit.
 - (a) Capacitor.

Chose the most appropriate alternative:

(b) Resistor.

(c) Diode.

- (d) Transistor.
- 3. A vector problem can be reduced to a scalar problem if the _____ is determined instead of field.
 - (a) Charge.

(b) Potential.

(c) Current.

- (d) Resistance.
- 4. Ballistic galvanometer is used to measure _____
 - (a) Force.

(b) Current.

(c) Charge.

(d) Capacitance.

E	771	0	0
E	71	J	J

(Pa	ges	:4)
-----	-----	-----

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Fourth Semester

· Core course - ELECTRICITY AND ELECTRODYNAMICS

(Common for B.Sc. Physics Model II, B.Sc. Physics Model II, B.Sc. Physics – EEM, B.Sc. Physics – Instrumentation)

(2011 Admission onwards)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions. Weight 1 for each bunch.

Bunch I

Cho	se the mo	st appropriate alter	native:		
1.		ritically damped grown		creases in a LC	R circuit without any oscillation
	a)	Rapidly.	(b)	Smoothly.	
	(c)	Immediately.	(d)	In a very shor	t interval of time.
2.	The pow		proved by connec	cting a	across the inductance in an
	(a)	Capacitor.	(b)	Resistor.	
	(c)	Diode.	(d)	Transistor:	
3.	A vector of field.	problem can be red	luced to a scalar p	problem if the _	is determined instead
	(a)	Charge.	(b)	Potential.	
	(c)	Current.	(d)	Resistance.	
4.	Ballistic	galvanometer is us	ed to measure		
	(a)	Force.	(b)	Current.	
	(c)	Charge.	(d)	Capacitance.	

Bunch IV

	*			
13.	At reson	ance the resultant voltage	e across the	e inductor and capacitor becomes :
	(a)	High.	(b)	Low.
	(c)	Zero.	(d)	None of these.
14.	Gauss d	ivergence theorem is on _		
	(a)	Divergence of voltage.	(b)	Charge density.
	(c)	Magnetic field.	(d)	Electric field.
15.	The Poy		x of	flowing out through a closed surface in a
	(a)	Total charge.	(b)	Total magnetic field.
	(c)	Total electric field.	(d)	Total energy.
16.	Which of	the following increase wi	th frequenc	y?
	(a)	Inductive reactance.	(b)	Capacitive reactance.
	(c)	Impedance.	(d)	None of these.
				$(4\times 1=4$
		Anguan	Part B any five qu	
			eight 1 each	
17.	Explain i	n resonance in LCR circu	its.	
18.	What is t	he logarithmic decrement	for a BG?	
19.	State and	l explain maximum power	transfer tl	neorem.
20.	What is Laplace equation?			
21.	. What is an equi potential surface? Give an example.			
22.	State Poy	nting theorem.		
23.	Write dov	wn the equation of a plane	polarized	one dimensional wave.
24.	What is n	neant by Skin effect?		
		HEART STATE		$(5\times 1=5$
			Part C	

Answer any four questions.

Weight 2 each.

25. With what capacitance of a capacitor in series with a coil of inductance 5 mH and resistance 0.5 ohm will the circuit oscillate with frequency of 1 kHz?

E 7199

- 26. An alternating e.m.f. of 200 V, 50 Hz is applied to a capacitor in series with a 20 V, 5 W lamp. Find the capacitance?
- 27. How can a voltage source be converted into equivalent current source and vice versa?
- 28. Two identical drops are charged to the same potential V. Find the new potential if the two drops coal ease into one drop?
- 29. Calculate the value of Poynting vector at the surface of sun if the power radiated by sun is 3.8×10^{26} Watts while its radius is 7×10^8 m.
- 30. In a plane EM wave, the electric field oscillates with an amplitude 48 Vm⁻¹ and frequency 2×10^{10} Hz. Find its wavelength and the average energy density in the magnetic field?

 $(4 \times 2 = 8)$

Part D

Answer any two questions.

Weight 4 each.

- 31. Discuss peak value, r.m.s. value and average value of a.c. and obtain relation between them.

 Derive expression for the power in an a.c. circuit.
- 32. State and prove Gauss theorem. Use it to find the electric field due to a charged spherical conductor.
- 33. Obtain expressions for the average energy and momentum of an EM wave.

 $(2 \times 4 = 8)$