E	pacy	SHAP	0	0
- 4	1	ha	9,5	8 B
B 14	- 4	o B	11	G #

(Pages: 4)

Reg. No	***************************************
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Sixth Semester

Core Course—CONDENSED MATTER PHYSICS

(Common for B.Sc. Physics Model I, B.Sc. Physics Model II, B.Sc Physics E.E.M. and B.Sc Physics-Instrumentation)

Time: Three Hours

Maximum Weight: 25

Part A

			Answer all qu Objective type Weight 1 for ea	question.	
			Bunch	I	
1.	An X-r	ay tube works in 60 KV. W	hat will be m	inimum wave length of X-rays emitted from it.	
	(a)	0.2×10^{-10} m.	(b)	2A°.	
	(c)	20A°.	(d)	200A°.	
2.	Five fo	ld rotation axis ——— is	s lattice.		
	(a)	Exist.	(b)	Dose not exist.	
	(c)	May possible.	(d)	All the above are correct.	
3.	3. A crystal possess maximum ———— point groups.				
	(a)	23.	(b)	32.	
	(c)	532.	(d)	1.	
4.	The mi	nimum symmetry element	ts presents in	control of the will be a standard of the	
	(a)	Ortho rhombic crystal.	(b)	Cubic Crystal.	
	(c)	Trigonal crystal.	(d)	Hexagonal crystal.	
			Bunch		
5.	At low	temperature above absolu	te zero for E <	$<$ E_p the Fermi Dirac function approaches.	
		-E			
		Li de la companya de	(1)		

(a) $\frac{-E}{e^{KT}}$

(b) Zero.

(c) Unity.

(d) Infinity.

6.	At low	temperature, the electrical resisti	vity v	raries as:				
	(a)	T.	(b)	T^2 .				
	(c)	T^3 .	(d)	T^5 .				
7.	Phonor	n is ———.						
	(a)	Electromagnetic wave.	(b)	Polarization wave.				
	(c)	Magnetisation wave.	(d)	Quantised lattice vibration.				
8.	Which	Which of the following shows tendency to polymarise?						
	(a)	Ionic.	(b)	Covalent.				
	(c)	Metallic.	(d)	Vander-Walls.				
		В	UNCH	III				
9.	9. The volume of a crystal primitive cell is 'V. The volume of the first Brillouin zone.							
	(-)	1						
	(a)	$\frac{1}{v}$.	(b)	v.				
				0.3				
	(c)	$2\pi^3 v$.	(d)	$\frac{2\pi^3}{v}$.				
10.	The vol	ume of a primitive unit cell of a F	CC	structure with lattice constant 'a' is ———.				
20.	1110 101	ame of a primitive unit cen of a r.	0.0 8	structure with lattice constant 'a' is ———.				
	(a)	a^3 .	(b)	$\frac{a^3}{a}$.				
				2				
		$\frac{a^3}{4}$.		a^3				
	(c)	4	(d)	$\frac{a^3}{8}$.				
11.	1. Two dimensional lattice with highest rotational symmetry is:							
		Triangular lattice.						
	(c)	Squire lattice.						
12.	The der			tates of E and E + dE is proportional to :				
		E ^{1/2} .	7.00	E. a disable and a second second				
	(c)	$E^{3/2}$,	(d)	E ² .				
		Bu	JNCH]	IV				
13.	At abso	lute zero temperature all the allow	ed er	nergy states up to Fermilevel will be:				
	(a)	Empty.		Occupied.				
	(c)	Half occupied and half empty.	(d)	Partially occupied and partially empty.				

	The same of the sa		The state of the s				
14.	Which	oftho	following	hac	hydrogen	handing	*
TI	AATIICII	OT OTTO	TOTTO WY TITE	mas	HYULUECH	Dullulle	

(a) CH₄.

(b) C.

(c) HF.

(d) Cscl.

15. A crystallographic has intercept 1 along 'a' 2 along 'b' and 3 along 'c'. The Miller indices are :

(a) (1, 2, 3).

(b) (2, 4, 6).

(c) (3, 2,1).

(d) (6, 3, 2).

16. The ideal c/a ratio for hexagonal close packed structure is:

(a) 1.

(b) $\frac{\sqrt{8}}{\pi}$.

(c) $\sqrt{3}$.

(d) $\sqrt{\frac{8}{3}}$.

 $(4 \times 1 = 4)$

Part B

Answer any five questions.

Short answer question.

Weight 1 for each.

- 17. What are Miller indices?
- 18. What is Bohr Magneton?
- 19. Explain what is A.C and D.C Josephson's effect.
- 20. Shows that five fold rotation is not exist in crystals.
- 21. Distinguish between Lattice and Reciprocal Lattice.
- 22. State and prove Bloch theorem.
- 23. Distinguish between type I and type II Super conductors.
- 24. Explain graphically the variation:
 - (a) Inter atomic force and potential energy with the spacing between the two atom?

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions. Short Essay/Problem. Weight 2 for each.

25. Show that $\left(-\frac{\partial f}{\partial E}\right)$ is a Fermi Dirac distribution is symmetrical and its integral is unity?

- 26. What are nanomaterials? Bring out the applications?
- 27. Calculate the packing fraction for a face centered cubic structure?
- 28. Explain briefly the Debey Scherror (Powder Method) for crystal structure analysis.
- 29. Copper has F.C.C structure and its atomic radius is 0. 1278 nm. Calculate its density. Atomic weight of copper is 63.5 a.m.u- Number of atoms/ unit volume 4.
- 30. Calculate the compressibility of an ionic solid. Madu lung constant 1.76. Lattice constant 0.41 mm. Repulsive exponent 0.5? $\Sigma_0 = 8.85 \times 10^{-12} e = 1.6 \times 10^{-19}$ coulomb.

 $(4 \times 2 = 8)$

Part D

Answer any **two** questions. Essay. Weight 4 for each.

- 31. Describe the two dimensional and three dimensional crystal lattices.
- 32. What are Super conductors? Explain Meisner effect. Briefly explain the B.C.S theory and energy gap of Super conductors.
- 33. What is Hall effect? Derive an expression for Hall Coefficient. Mention some applications.

 $(2 \times 4 = 8)$